{"title":"用最大似然算法训练的光学神经网络的稳定性","authors":"B. V. Kryzhanovsky, V. I. Egorov","doi":"10.3103/s1060992x2307010x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The possibility of the maximum-likelihood algorithm-based deep learning of an optical neural network is considered. Using the optimization of thermodynamic parameters of the network, the algorithm can fail when the network undergoes a phase transition caused by changes of network weights in learning. The approach based on Schraudolph–Kamenetsky [1] and Karandashev–Malsagov [2] algorithms is used in computer simulation. Both algorithms allow the free energy of the system on a planar graph to be computed exactly. The restrictions on the number of negative connections are determined that secure the stability of the system, the absence of the phase transition and unrestrained use of the maximum-likelihood algorithm.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of an Optical Neural Network Trained by the Maximum-Likelihood Algorithm\",\"authors\":\"B. V. Kryzhanovsky, V. I. Egorov\",\"doi\":\"10.3103/s1060992x2307010x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The possibility of the maximum-likelihood algorithm-based deep learning of an optical neural network is considered. Using the optimization of thermodynamic parameters of the network, the algorithm can fail when the network undergoes a phase transition caused by changes of network weights in learning. The approach based on Schraudolph–Kamenetsky [1] and Karandashev–Malsagov [2] algorithms is used in computer simulation. Both algorithms allow the free energy of the system on a planar graph to be computed exactly. The restrictions on the number of negative connections are determined that secure the stability of the system, the absence of the phase transition and unrestrained use of the maximum-likelihood algorithm.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1060992x2307010x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1060992x2307010x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Stability of an Optical Neural Network Trained by the Maximum-Likelihood Algorithm
Abstract
The possibility of the maximum-likelihood algorithm-based deep learning of an optical neural network is considered. Using the optimization of thermodynamic parameters of the network, the algorithm can fail when the network undergoes a phase transition caused by changes of network weights in learning. The approach based on Schraudolph–Kamenetsky [1] and Karandashev–Malsagov [2] algorithms is used in computer simulation. Both algorithms allow the free energy of the system on a planar graph to be computed exactly. The restrictions on the number of negative connections are determined that secure the stability of the system, the absence of the phase transition and unrestrained use of the maximum-likelihood algorithm.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.