菌根真菌能增加粘土中植物的养分吸收、聚合稳定性和微生物生物量

IF 2.1 3区 生物学 Q3 MICROBIOLOGY Symbiosis Pub Date : 2024-05-06 DOI:10.1007/s13199-024-00994-4
Shova Akter, Md. Kamruzzaman, Md. Piash Sarder, Md. Sadiqul Amin, Jagadish Chandra Joardar, Md. Sanaul Islam, Sonia Nasrin, Mahbub Ul Islam, Faridul Islam, Sheikh Rabbi, Milton Halder
{"title":"菌根真菌能增加粘土中植物的养分吸收、聚合稳定性和微生物生物量","authors":"Shova Akter, Md. Kamruzzaman, Md. Piash Sarder, Md. Sadiqul Amin, Jagadish Chandra Joardar, Md. Sanaul Islam, Sonia Nasrin, Mahbub Ul Islam, Faridul Islam, Sheikh Rabbi, Milton Halder","doi":"10.1007/s13199-024-00994-4","DOIUrl":null,"url":null,"abstract":"<p>Arbuscular mycorrhizal fungi (AMF) are beneficial soil organisms that can form symbiotic associations with the host plant roots. Mycorrhizal symbiosis between plant root and fungi can influence plant diversity and ecosystem productivity. However, the impacts of AMF frequently documented in the loamy to sandy soil, whereas it has no precise mechanism of influencing plant productivity, macronutrient uptake, and aggregation in a clay soil. A pot experiment was carried out to investigate the impact of AMF on plant growth, nutrient uptake and soil aggregation in a clay soil of Bangladesh. Okra (<i>Abelmoschus esculentus</i> L.) was cultivated over 105 days with AMF and without AMF (NAMF) with 5 replications. Plant productivity, nutrient uptake, soil organic carbon (SOC), microbial biomass carbon (MBC), aggregate stability (MWD), and glomalin-related soil protein (GRSP) were measured after 105 days. Results showed that the plant productivity and nutrient availability in soil and their subsequent uptake in AMF were significantly higher compared to the NAMF treatment (<i>p</i> &lt; 0.01). We observed 17% increase in aggregate stability (measured as mean weight diameter) and 28% increase in organic carbon in AMF inoculated soil compared to NAMF. The microbial biomass carbon and GRSP were significantly higher in the AMF than NAMF treatment (<i>p</i> &lt; 0.01). The findings highlight that AMF introduction can be a promising tool for improving plant production and soil condition in the clay soil instead of conventional farming system.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycorrhizal fungi increase plant nutrient uptake, aggregate stability and microbial biomass in the clay soil\",\"authors\":\"Shova Akter, Md. Kamruzzaman, Md. Piash Sarder, Md. Sadiqul Amin, Jagadish Chandra Joardar, Md. Sanaul Islam, Sonia Nasrin, Mahbub Ul Islam, Faridul Islam, Sheikh Rabbi, Milton Halder\",\"doi\":\"10.1007/s13199-024-00994-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Arbuscular mycorrhizal fungi (AMF) are beneficial soil organisms that can form symbiotic associations with the host plant roots. Mycorrhizal symbiosis between plant root and fungi can influence plant diversity and ecosystem productivity. However, the impacts of AMF frequently documented in the loamy to sandy soil, whereas it has no precise mechanism of influencing plant productivity, macronutrient uptake, and aggregation in a clay soil. A pot experiment was carried out to investigate the impact of AMF on plant growth, nutrient uptake and soil aggregation in a clay soil of Bangladesh. Okra (<i>Abelmoschus esculentus</i> L.) was cultivated over 105 days with AMF and without AMF (NAMF) with 5 replications. Plant productivity, nutrient uptake, soil organic carbon (SOC), microbial biomass carbon (MBC), aggregate stability (MWD), and glomalin-related soil protein (GRSP) were measured after 105 days. Results showed that the plant productivity and nutrient availability in soil and their subsequent uptake in AMF were significantly higher compared to the NAMF treatment (<i>p</i> &lt; 0.01). We observed 17% increase in aggregate stability (measured as mean weight diameter) and 28% increase in organic carbon in AMF inoculated soil compared to NAMF. The microbial biomass carbon and GRSP were significantly higher in the AMF than NAMF treatment (<i>p</i> &lt; 0.01). The findings highlight that AMF introduction can be a promising tool for improving plant production and soil condition in the clay soil instead of conventional farming system.</p>\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-024-00994-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-024-00994-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丛枝菌根真菌(AMF)是一种有益的土壤生物,可与寄主植物根系形成共生关系。植物根系与真菌之间的菌根共生关系可影响植物多样性和生态系统的生产力。然而,AMF 对壤土和沙质土壤的影响经常被记录在案,而它对粘质土壤中的植物生产力、常量养分吸收和聚合作用却没有确切的影响机制。为了研究 AMF 对孟加拉国粘土中植物生长、养分吸收和土壤团聚的影响,我们进行了一项盆栽实验。对秋葵(Abelmoschus esculentus L.)进行了为期 105 天的栽培,其中有 5 次重复施用 AMF,也有 5 次重复不施用 AMF(NAMF)。105 天后,对植物生产力、养分吸收、土壤有机碳(SOC)、微生物生物量碳(MBC)、团聚稳定性(MWD)和谷胱甘肽相关土壤蛋白质(GRSP)进行了测定。结果表明,与 NAMF 处理相比,AMF 处理的植物生产力和土壤中的养分供应量及其随后的吸收量均显著提高(p < 0.01)。我们观察到,与 NAMF 相比,AMF 接种土壤中的团聚体稳定性(以平均重量直径衡量)增加了 17%,有机碳增加了 28%。在 AMF 处理中,微生物生物量碳和 GRSP 明显高于 NAMF 处理(p < 0.01)。研究结果表明,与传统耕作制度相比,AMF 的引入可成为提高粘质土壤中植物产量和改善土壤条件的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mycorrhizal fungi increase plant nutrient uptake, aggregate stability and microbial biomass in the clay soil

Arbuscular mycorrhizal fungi (AMF) are beneficial soil organisms that can form symbiotic associations with the host plant roots. Mycorrhizal symbiosis between plant root and fungi can influence plant diversity and ecosystem productivity. However, the impacts of AMF frequently documented in the loamy to sandy soil, whereas it has no precise mechanism of influencing plant productivity, macronutrient uptake, and aggregation in a clay soil. A pot experiment was carried out to investigate the impact of AMF on plant growth, nutrient uptake and soil aggregation in a clay soil of Bangladesh. Okra (Abelmoschus esculentus L.) was cultivated over 105 days with AMF and without AMF (NAMF) with 5 replications. Plant productivity, nutrient uptake, soil organic carbon (SOC), microbial biomass carbon (MBC), aggregate stability (MWD), and glomalin-related soil protein (GRSP) were measured after 105 days. Results showed that the plant productivity and nutrient availability in soil and their subsequent uptake in AMF were significantly higher compared to the NAMF treatment (p < 0.01). We observed 17% increase in aggregate stability (measured as mean weight diameter) and 28% increase in organic carbon in AMF inoculated soil compared to NAMF. The microbial biomass carbon and GRSP were significantly higher in the AMF than NAMF treatment (p < 0.01). The findings highlight that AMF introduction can be a promising tool for improving plant production and soil condition in the clay soil instead of conventional farming system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symbiosis
Symbiosis 生物-微生物学
CiteScore
4.80
自引率
8.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field. Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.
期刊最新文献
Fungal community structure in bees: influence of biome and host species The monodominant species Spirotropis longifolia is mainly nodulated by strains of the genus Bradyrhizobium outside the B. japonicum and B. elkanii superclades The soil legacy produced by grass-endophyte-mycorrhizae fungi interaction increases legume establishment Are the symbiont faunas of the venomous echinoids Toxopneustes pileolus and Tripneustes gratilla (Echinoidea, Toxopneustidae) similar? Microbiome diversity and composition across development stages of the Blue Orchard Bee, Osmia lignaria (Megachilidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1