Ana Falconí-López, Nina Grella, David A. Donoso, Heike Feldhaar, Constance J. Tremlett, Jörg Müller
{"title":"从农业到原始低地热带森林的自然森林恢复梯度上的枯木量和枯木多样性模式","authors":"Ana Falconí-López, Nina Grella, David A. Donoso, Heike Feldhaar, Constance J. Tremlett, Jörg Müller","doi":"10.1007/s10342-024-01671-3","DOIUrl":null,"url":null,"abstract":"<p>Deadwood is a key component of nutrient cycling in natural tropical forests, serving as a globally important carbon storage and habitat for a high number of species. The conversion of tropical forests to agriculture modifies deadwood pools, but we know little about deadwood dynamics in forests recovering from human disturbance. Here we quantified the volume and diversity of coarse woody debris (CWD, ≥ 7 cm diameter) and the mass of fine woody debris (FWD, < 7 cm) along a chronosequence of natural forest recovery in the lowlands of the Ecuadorian Chocó region. We sampled forest plots ranging from 1–37 years of recovery post-cessation of agricultural use as either cacao plantation or cattle pasture, as well as actively managed cacao plantations and cattle pastures, and old-growth forests. In contrast to our expectation, we found no significant increase in deadwood volume with recovery time. The diversity in size, decay stage and type of CWD increased along the recovery gradient, with no effect of previous land use type. The mass of FWD increased overall across the recovery gradient, but these results were driven by a steep increase in former pastures, with no change observed in former cacao plantations. We suggest that the range of sizes and decomposition stages of deadwood found in these two major tropical agricultural systems could provide suitable resources for saproxylic organisms and an overlooked carbon storage outside old-growth forests. Our estimates of deadwood in agricultural systems and recovering forests can help improve global assessments of carbon storage and release in the tropics.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"14 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of deadwood amount and deadwood diversity along a natural forest recovery gradient from agriculture to old-growth lowland tropical forests\",\"authors\":\"Ana Falconí-López, Nina Grella, David A. Donoso, Heike Feldhaar, Constance J. Tremlett, Jörg Müller\",\"doi\":\"10.1007/s10342-024-01671-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deadwood is a key component of nutrient cycling in natural tropical forests, serving as a globally important carbon storage and habitat for a high number of species. The conversion of tropical forests to agriculture modifies deadwood pools, but we know little about deadwood dynamics in forests recovering from human disturbance. Here we quantified the volume and diversity of coarse woody debris (CWD, ≥ 7 cm diameter) and the mass of fine woody debris (FWD, < 7 cm) along a chronosequence of natural forest recovery in the lowlands of the Ecuadorian Chocó region. We sampled forest plots ranging from 1–37 years of recovery post-cessation of agricultural use as either cacao plantation or cattle pasture, as well as actively managed cacao plantations and cattle pastures, and old-growth forests. In contrast to our expectation, we found no significant increase in deadwood volume with recovery time. The diversity in size, decay stage and type of CWD increased along the recovery gradient, with no effect of previous land use type. The mass of FWD increased overall across the recovery gradient, but these results were driven by a steep increase in former pastures, with no change observed in former cacao plantations. We suggest that the range of sizes and decomposition stages of deadwood found in these two major tropical agricultural systems could provide suitable resources for saproxylic organisms and an overlooked carbon storage outside old-growth forests. Our estimates of deadwood in agricultural systems and recovering forests can help improve global assessments of carbon storage and release in the tropics.</p>\",\"PeriodicalId\":11996,\"journal\":{\"name\":\"European Journal of Forest Research\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10342-024-01671-3\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01671-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Patterns of deadwood amount and deadwood diversity along a natural forest recovery gradient from agriculture to old-growth lowland tropical forests
Deadwood is a key component of nutrient cycling in natural tropical forests, serving as a globally important carbon storage and habitat for a high number of species. The conversion of tropical forests to agriculture modifies deadwood pools, but we know little about deadwood dynamics in forests recovering from human disturbance. Here we quantified the volume and diversity of coarse woody debris (CWD, ≥ 7 cm diameter) and the mass of fine woody debris (FWD, < 7 cm) along a chronosequence of natural forest recovery in the lowlands of the Ecuadorian Chocó region. We sampled forest plots ranging from 1–37 years of recovery post-cessation of agricultural use as either cacao plantation or cattle pasture, as well as actively managed cacao plantations and cattle pastures, and old-growth forests. In contrast to our expectation, we found no significant increase in deadwood volume with recovery time. The diversity in size, decay stage and type of CWD increased along the recovery gradient, with no effect of previous land use type. The mass of FWD increased overall across the recovery gradient, but these results were driven by a steep increase in former pastures, with no change observed in former cacao plantations. We suggest that the range of sizes and decomposition stages of deadwood found in these two major tropical agricultural systems could provide suitable resources for saproxylic organisms and an overlooked carbon storage outside old-growth forests. Our estimates of deadwood in agricultural systems and recovering forests can help improve global assessments of carbon storage and release in the tropics.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.