{"title":"印度铁路平交道口事故成本分析与预测","authors":"Anil Kumar Chhotu, Sanjeev Kumar Suman","doi":"10.1007/s40864-024-00220-w","DOIUrl":null,"url":null,"abstract":"<p>With the tremendous increase in the number of vehicles, the dense traffic created can lead to accidents and fatalities. In a traffic system, the costs for accidents are immeasurable. Numerous studies have been carried out to predict the cost of fatal accidents but have provided the actual values. Therefore, in this study, a monkey-based modular neural system (MbMNS) is developed to identify accident cost. The accident cases and cost data were collected and preprocessed to remove the noise, and the required features were extracted using the spider monkey function. Based on the extracted features, the accidents and the costs were identified. For rail engineering, this will support evaluating the number of railroad crossing accidents with different time intervals. The impact of every accident was also measured with different cost analysis constraints, including insurance, medical, and legal and administrative costs. Therefore, the present study contributes to the field by collecting and organizing the present railroad level crossing accident data from crossing inventory dashboards. Then, the introduction of a novel MbMNS for the cost analysis is the primary contribution of this study to further enrich the railroad level crossing protection system. The third contribution is the tuning of the prediction layer of a modular neural network to the desired level to achieve the highest predictive exactness score. Hence, the designed MbMNS was tested in the Python environment, and the results were validated with regard to recall, accuracy, <i>F</i>-measure, precision, and error values; a comparative analysis was also conducted to confirm the improvement. The novel MbMNS recorded high accuracy of 96.29% for accident and cost analysis, which is better than that reported for other traditional methods.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":"6 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost Analysis and Prediction of Railroad Level Crossing Accidents for Indian Railways\",\"authors\":\"Anil Kumar Chhotu, Sanjeev Kumar Suman\",\"doi\":\"10.1007/s40864-024-00220-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the tremendous increase in the number of vehicles, the dense traffic created can lead to accidents and fatalities. In a traffic system, the costs for accidents are immeasurable. Numerous studies have been carried out to predict the cost of fatal accidents but have provided the actual values. Therefore, in this study, a monkey-based modular neural system (MbMNS) is developed to identify accident cost. The accident cases and cost data were collected and preprocessed to remove the noise, and the required features were extracted using the spider monkey function. Based on the extracted features, the accidents and the costs were identified. For rail engineering, this will support evaluating the number of railroad crossing accidents with different time intervals. The impact of every accident was also measured with different cost analysis constraints, including insurance, medical, and legal and administrative costs. Therefore, the present study contributes to the field by collecting and organizing the present railroad level crossing accident data from crossing inventory dashboards. Then, the introduction of a novel MbMNS for the cost analysis is the primary contribution of this study to further enrich the railroad level crossing protection system. The third contribution is the tuning of the prediction layer of a modular neural network to the desired level to achieve the highest predictive exactness score. Hence, the designed MbMNS was tested in the Python environment, and the results were validated with regard to recall, accuracy, <i>F</i>-measure, precision, and error values; a comparative analysis was also conducted to confirm the improvement. The novel MbMNS recorded high accuracy of 96.29% for accident and cost analysis, which is better than that reported for other traditional methods.</p>\",\"PeriodicalId\":44861,\"journal\":{\"name\":\"Urban Rail Transit\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Rail Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40864-024-00220-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-024-00220-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Cost Analysis and Prediction of Railroad Level Crossing Accidents for Indian Railways
With the tremendous increase in the number of vehicles, the dense traffic created can lead to accidents and fatalities. In a traffic system, the costs for accidents are immeasurable. Numerous studies have been carried out to predict the cost of fatal accidents but have provided the actual values. Therefore, in this study, a monkey-based modular neural system (MbMNS) is developed to identify accident cost. The accident cases and cost data were collected and preprocessed to remove the noise, and the required features were extracted using the spider monkey function. Based on the extracted features, the accidents and the costs were identified. For rail engineering, this will support evaluating the number of railroad crossing accidents with different time intervals. The impact of every accident was also measured with different cost analysis constraints, including insurance, medical, and legal and administrative costs. Therefore, the present study contributes to the field by collecting and organizing the present railroad level crossing accident data from crossing inventory dashboards. Then, the introduction of a novel MbMNS for the cost analysis is the primary contribution of this study to further enrich the railroad level crossing protection system. The third contribution is the tuning of the prediction layer of a modular neural network to the desired level to achieve the highest predictive exactness score. Hence, the designed MbMNS was tested in the Python environment, and the results were validated with regard to recall, accuracy, F-measure, precision, and error values; a comparative analysis was also conducted to confirm the improvement. The novel MbMNS recorded high accuracy of 96.29% for accident and cost analysis, which is better than that reported for other traditional methods.
期刊介绍:
Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field.
Specific topics cover:
Column I: Urban Rail Transportation Operation and Management
• urban rail transit flow theory, operation, planning, control and management
• traffic and transport safety
• traffic polices and economics
• urban rail management
• traffic information management
• urban rail scheduling
• train scheduling and management
• strategies of ticket price
• traffic information engineering & control
• intelligent transportation system (ITS) and information technology
• economics, finance, business & industry
• train operation, control
• transport Industries
• transportation engineering
Column II: Urban Rail Transportation Design and Planning
• urban rail planning
• pedestrian studies
• sustainable transport engineering
• rail electrification
• rail signaling and communication
• Intelligent & Automated Transport System Technology ?
• rolling stock design theory and structural reliability
• urban rail transit electrification and automation technologies
• transport Industries
• transportation engineering
Column III: Civil Engineering
• civil engineering technologies
• maintenance of rail infrastructure
• transportation infrastructure systems
• roads, bridges, tunnels, and underground engineering ?
• subgrade and pavement maintenance and performance
Column IV: Equipments and Systems
• mechanical-electronic technologies
• manufacturing engineering
• inspection for trains and rail
• vehicle-track coupling system dynamics, simulation and control
• superconductivity and levitation technology
• magnetic suspension and evacuated tube transport
• railway technology & engineering
• Railway Transport Industries
• transport & vehicle engineering
Column V: other topics of interest
• modern tram
• interdisciplinary transportation research
• environmental impacts such as vibration, noise and pollution
Article types:
• Papers. Reports of original research work.
• Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems.
• Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication.
• Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.