Yikang Jia, Tianyi Song, Yulin Dong, Xiangyu Wang, Rui Zhang, Pengyu Zhao, Sihong Ma, Kaiyu Li, Jin Liu, Guang Zeng, Zifeng Wang, Hao Zhang, Jishen Zhang, Li Guo, Dingxin Liu
{"title":"等离子活化水对口腔病原体变异链球菌和牙龈卟啉单胞菌的高效灭活效果","authors":"Yikang Jia, Tianyi Song, Yulin Dong, Xiangyu Wang, Rui Zhang, Pengyu Zhao, Sihong Ma, Kaiyu Li, Jin Liu, Guang Zeng, Zifeng Wang, Hao Zhang, Jishen Zhang, Li Guo, Dingxin Liu","doi":"10.1002/ppap.202400048","DOIUrl":null,"url":null,"abstract":"Oral diseases stemming from oral pathogenic bacteria pose a significant global health concern, and current methods for managing these pathogens have limitations. Plasma‐activated water (PAW), containing various reactive species, emerges as a promising disinfectant with impressive inactivation capabilities. In this study, PAW prepared by mixed‐mode plasma‐activated gases was applied to inactivate oral pathogenic bacteria, including <jats:italic>Streptococcus mutans</jats:italic> and <jats:italic>Porphyromonas gingivalis</jats:italic>. The PAW could reduce more than 6.1‐log<jats:sub>10</jats:sub> planktonic bacteria and 4.1‐log<jats:sub>10</jats:sub> bacteria within biofilm, respectively, and PAW treatment of planktonic bacteria effectively inhibited biofilm formation. Compared to chlorhexidine, PAW exhibited superior inactivation effects in both planktonic bacteria and biofilm. This study presented a potent strategy for bacteria eradication to reduce the incidence of oral diseases.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient inactivation effect of plasma‐activated water on oral pathogens Streptococcus mutans and Porphyromonas gingivalis\",\"authors\":\"Yikang Jia, Tianyi Song, Yulin Dong, Xiangyu Wang, Rui Zhang, Pengyu Zhao, Sihong Ma, Kaiyu Li, Jin Liu, Guang Zeng, Zifeng Wang, Hao Zhang, Jishen Zhang, Li Guo, Dingxin Liu\",\"doi\":\"10.1002/ppap.202400048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oral diseases stemming from oral pathogenic bacteria pose a significant global health concern, and current methods for managing these pathogens have limitations. Plasma‐activated water (PAW), containing various reactive species, emerges as a promising disinfectant with impressive inactivation capabilities. In this study, PAW prepared by mixed‐mode plasma‐activated gases was applied to inactivate oral pathogenic bacteria, including <jats:italic>Streptococcus mutans</jats:italic> and <jats:italic>Porphyromonas gingivalis</jats:italic>. The PAW could reduce more than 6.1‐log<jats:sub>10</jats:sub> planktonic bacteria and 4.1‐log<jats:sub>10</jats:sub> bacteria within biofilm, respectively, and PAW treatment of planktonic bacteria effectively inhibited biofilm formation. Compared to chlorhexidine, PAW exhibited superior inactivation effects in both planktonic bacteria and biofilm. This study presented a potent strategy for bacteria eradication to reduce the incidence of oral diseases.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400048\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400048","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Efficient inactivation effect of plasma‐activated water on oral pathogens Streptococcus mutans and Porphyromonas gingivalis
Oral diseases stemming from oral pathogenic bacteria pose a significant global health concern, and current methods for managing these pathogens have limitations. Plasma‐activated water (PAW), containing various reactive species, emerges as a promising disinfectant with impressive inactivation capabilities. In this study, PAW prepared by mixed‐mode plasma‐activated gases was applied to inactivate oral pathogenic bacteria, including Streptococcus mutans and Porphyromonas gingivalis. The PAW could reduce more than 6.1‐log10 planktonic bacteria and 4.1‐log10 bacteria within biofilm, respectively, and PAW treatment of planktonic bacteria effectively inhibited biofilm formation. Compared to chlorhexidine, PAW exhibited superior inactivation effects in both planktonic bacteria and biofilm. This study presented a potent strategy for bacteria eradication to reduce the incidence of oral diseases.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.