Sui Bun Lo, Oubay Hassan, Jason Jones, Xiaolong Liu, Nevan C Himmelberg, Dean Thornton
{"title":"地质数据网格划分过程自动化","authors":"Sui Bun Lo, Oubay Hassan, Jason Jones, Xiaolong Liu, Nevan C Himmelberg, Dean Thornton","doi":"10.1007/s10596-024-10290-1","DOIUrl":null,"url":null,"abstract":"<p>This work proposes a novel meshing technique that is able to extract surfaces from processed seismic data and integrate surfaces that were constructed using other extraction techniques. Contrary to other existing methods, the process is fully automated and does not require any user intervention. The proposed system includes an approach for closing the gaps that arise from the different techniques used for surface extraction. The developed process is able to handle non-manifold domains that result from multiple surface intersections. Surface and volume meshing that comply with user specified mesh control techniques are implemented to ensure the desired mesh quality. The integrated procedures provide a unique facility to handle geotechnical models and accelerate the generation of quality meshes for geophysics modelling. The developed procedure enables the creation of meshes for complex reservoir models to be reduced from weeks to a few hours. Various industrial examples are shown to demonstrate the practicable use of the developed approach to handle real life data.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"67 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automation of the meshing process of geological data\",\"authors\":\"Sui Bun Lo, Oubay Hassan, Jason Jones, Xiaolong Liu, Nevan C Himmelberg, Dean Thornton\",\"doi\":\"10.1007/s10596-024-10290-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work proposes a novel meshing technique that is able to extract surfaces from processed seismic data and integrate surfaces that were constructed using other extraction techniques. Contrary to other existing methods, the process is fully automated and does not require any user intervention. The proposed system includes an approach for closing the gaps that arise from the different techniques used for surface extraction. The developed process is able to handle non-manifold domains that result from multiple surface intersections. Surface and volume meshing that comply with user specified mesh control techniques are implemented to ensure the desired mesh quality. The integrated procedures provide a unique facility to handle geotechnical models and accelerate the generation of quality meshes for geophysics modelling. The developed procedure enables the creation of meshes for complex reservoir models to be reduced from weeks to a few hours. Various industrial examples are shown to demonstrate the practicable use of the developed approach to handle real life data.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-024-10290-1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10290-1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Automation of the meshing process of geological data
This work proposes a novel meshing technique that is able to extract surfaces from processed seismic data and integrate surfaces that were constructed using other extraction techniques. Contrary to other existing methods, the process is fully automated and does not require any user intervention. The proposed system includes an approach for closing the gaps that arise from the different techniques used for surface extraction. The developed process is able to handle non-manifold domains that result from multiple surface intersections. Surface and volume meshing that comply with user specified mesh control techniques are implemented to ensure the desired mesh quality. The integrated procedures provide a unique facility to handle geotechnical models and accelerate the generation of quality meshes for geophysics modelling. The developed procedure enables the creation of meshes for complex reservoir models to be reduced from weeks to a few hours. Various industrial examples are shown to demonstrate the practicable use of the developed approach to handle real life data.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.