{"title":"轧制粘接法制造的超薄不锈钢-铜复合材料的微观结构演变、界面扩散和力学性能研究","authors":"Yanyang Qi, Xiaoguang Ma, Linan Ma, Cunlong Zhou, Zhengyi Jiang, Jingwei Zhao","doi":"10.1007/s12540-024-01682-0","DOIUrl":null,"url":null,"abstract":"<div><p>Systematic study on the microstructural evolution, interfacial diffusion and mechanical properties of ultra-thin stainless steel–copper composites (50 µm) after annealing treatment was conducted in the present study. The results show that the as-received specimen exhibits low elongation (0.031) as well as high strength (891.346 MPa) by work hardening, thus requires heat treatment to improve the plasticity. With the increase of annealing temperature from 700 to 1000 °C, the dislocation/grain boundary strengthening is weakened while the surface grains which exhibit fewer constraints is increasing, resulting in lower strength. Moreover, a uniform and refined microstructure with high recrystallization rate is formed inside stainless steel and copper matrixes for the specimens annealed at 900 °C, thereby improving the plasticity of ultra-thin stainless steel–copper composites. Additionally, an obvious strain gradient exists at the interface of ultra-thin stainless steel–copper composites, and the interdiffusion process between stainless steel and copper matrixes is primarily governed by the diffusion of Cu atoms. The influence of diffusion layer thickness on the strength of ultra-thin stainless steel–copper composites is negligible. Overall, an optimal annealing temperature of 900 °C is obtained with the improved plasticity of ultra-thin stainless steel–copper composites.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 10","pages":"2925 - 2941"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Microstructural Evolution, Interfacial Diffusion and Mechanical Properties of Ultra-thin Stainless Steel–Copper Composites Fabricated by Roll Bonding\",\"authors\":\"Yanyang Qi, Xiaoguang Ma, Linan Ma, Cunlong Zhou, Zhengyi Jiang, Jingwei Zhao\",\"doi\":\"10.1007/s12540-024-01682-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Systematic study on the microstructural evolution, interfacial diffusion and mechanical properties of ultra-thin stainless steel–copper composites (50 µm) after annealing treatment was conducted in the present study. The results show that the as-received specimen exhibits low elongation (0.031) as well as high strength (891.346 MPa) by work hardening, thus requires heat treatment to improve the plasticity. With the increase of annealing temperature from 700 to 1000 °C, the dislocation/grain boundary strengthening is weakened while the surface grains which exhibit fewer constraints is increasing, resulting in lower strength. Moreover, a uniform and refined microstructure with high recrystallization rate is formed inside stainless steel and copper matrixes for the specimens annealed at 900 °C, thereby improving the plasticity of ultra-thin stainless steel–copper composites. Additionally, an obvious strain gradient exists at the interface of ultra-thin stainless steel–copper composites, and the interdiffusion process between stainless steel and copper matrixes is primarily governed by the diffusion of Cu atoms. The influence of diffusion layer thickness on the strength of ultra-thin stainless steel–copper composites is negligible. Overall, an optimal annealing temperature of 900 °C is obtained with the improved plasticity of ultra-thin stainless steel–copper composites.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"30 10\",\"pages\":\"2925 - 2941\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01682-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01682-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Study on the Microstructural Evolution, Interfacial Diffusion and Mechanical Properties of Ultra-thin Stainless Steel–Copper Composites Fabricated by Roll Bonding
Systematic study on the microstructural evolution, interfacial diffusion and mechanical properties of ultra-thin stainless steel–copper composites (50 µm) after annealing treatment was conducted in the present study. The results show that the as-received specimen exhibits low elongation (0.031) as well as high strength (891.346 MPa) by work hardening, thus requires heat treatment to improve the plasticity. With the increase of annealing temperature from 700 to 1000 °C, the dislocation/grain boundary strengthening is weakened while the surface grains which exhibit fewer constraints is increasing, resulting in lower strength. Moreover, a uniform and refined microstructure with high recrystallization rate is formed inside stainless steel and copper matrixes for the specimens annealed at 900 °C, thereby improving the plasticity of ultra-thin stainless steel–copper composites. Additionally, an obvious strain gradient exists at the interface of ultra-thin stainless steel–copper composites, and the interdiffusion process between stainless steel and copper matrixes is primarily governed by the diffusion of Cu atoms. The influence of diffusion layer thickness on the strength of ultra-thin stainless steel–copper composites is negligible. Overall, an optimal annealing temperature of 900 °C is obtained with the improved plasticity of ultra-thin stainless steel–copper composites.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.