{"title":"利用非局部弹性理论,基于 PINN 对三参数非线性弹性地基上的纳米梁(包括硬化和软化效应)进行正向和反向弯曲分析","authors":"Omid Kianian, Saeid Sarrami, Bashir Movahedian, Mojtaba Azhari","doi":"10.1007/s00366-024-01985-1","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the application of Physics-Informed Neural Network (PINN), a novel class of scientific machine learning techniques, for analyzing the static bending response of nanobeams as essential structural elements in micro/nanoelectromechanical systems, including nanoprobes, atomic force microscope sensors, nanoswitches, nanoactuators, and nanoscale biosensors on a three-parameter nonlinear elastic foundation. The study combines Euler–Bernoulli beam theory and Eringen’s nonlocal continuum theory to derive the governing differential equation using the minimum total potential energy principle. PINN is utilized for approximating the differential equation solution and identifying the nanobeam’s nonlocal parameter through an inverse problem with measurement data. The loss function incorporates terms representing the initial and boundary conditions, along with the differential equation residual at specific points in the domain and boundary. The research demonstrates PINN’s efficacy in analyzing nanobeam behavior on nonlinear elastic foundations, providing valuable insights into responses under different loading and boundary conditions. The proposed approach's accuracy and efficiency are validated through comparisons with existing literature. Additionally, the study investigates the effects of activation functions, collocation points’ number and distribution, nonlocal parameter, foundation stiffness coefficients, loading types, and various boundary conditions on nanobeam bending behavior.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"47 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINN-based forward and inverse bending analysis of nanobeams on a three-parameter nonlinear elastic foundation including hardening and softening effect using nonlocal elasticity theory\",\"authors\":\"Omid Kianian, Saeid Sarrami, Bashir Movahedian, Mojtaba Azhari\",\"doi\":\"10.1007/s00366-024-01985-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces the application of Physics-Informed Neural Network (PINN), a novel class of scientific machine learning techniques, for analyzing the static bending response of nanobeams as essential structural elements in micro/nanoelectromechanical systems, including nanoprobes, atomic force microscope sensors, nanoswitches, nanoactuators, and nanoscale biosensors on a three-parameter nonlinear elastic foundation. The study combines Euler–Bernoulli beam theory and Eringen’s nonlocal continuum theory to derive the governing differential equation using the minimum total potential energy principle. PINN is utilized for approximating the differential equation solution and identifying the nanobeam’s nonlocal parameter through an inverse problem with measurement data. The loss function incorporates terms representing the initial and boundary conditions, along with the differential equation residual at specific points in the domain and boundary. The research demonstrates PINN’s efficacy in analyzing nanobeam behavior on nonlinear elastic foundations, providing valuable insights into responses under different loading and boundary conditions. The proposed approach's accuracy and efficiency are validated through comparisons with existing literature. Additionally, the study investigates the effects of activation functions, collocation points’ number and distribution, nonlocal parameter, foundation stiffness coefficients, loading types, and various boundary conditions on nanobeam bending behavior.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-01985-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01985-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
PINN-based forward and inverse bending analysis of nanobeams on a three-parameter nonlinear elastic foundation including hardening and softening effect using nonlocal elasticity theory
This paper introduces the application of Physics-Informed Neural Network (PINN), a novel class of scientific machine learning techniques, for analyzing the static bending response of nanobeams as essential structural elements in micro/nanoelectromechanical systems, including nanoprobes, atomic force microscope sensors, nanoswitches, nanoactuators, and nanoscale biosensors on a three-parameter nonlinear elastic foundation. The study combines Euler–Bernoulli beam theory and Eringen’s nonlocal continuum theory to derive the governing differential equation using the minimum total potential energy principle. PINN is utilized for approximating the differential equation solution and identifying the nanobeam’s nonlocal parameter through an inverse problem with measurement data. The loss function incorporates terms representing the initial and boundary conditions, along with the differential equation residual at specific points in the domain and boundary. The research demonstrates PINN’s efficacy in analyzing nanobeam behavior on nonlinear elastic foundations, providing valuable insights into responses under different loading and boundary conditions. The proposed approach's accuracy and efficiency are validated through comparisons with existing literature. Additionally, the study investigates the effects of activation functions, collocation points’ number and distribution, nonlocal parameter, foundation stiffness coefficients, loading types, and various boundary conditions on nanobeam bending behavior.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.