耐高温强吸附刚性阻断剂的开发与性能评估

IF 6 1区 工程技术 Q2 ENERGY & FUELS Petroleum Science Pub Date : 2024-08-01 DOI:10.1016/j.petsci.2024.03.021
{"title":"耐高温强吸附刚性阻断剂的开发与性能评估","authors":"","doi":"10.1016/j.petsci.2024.03.021","DOIUrl":null,"url":null,"abstract":"<div><p>As drilling wells continue to move into deep ultra-deep layers, the requirements for temperature resistance of drilling fluid treatments are getting higher and higher. Among them, blocking agent, as one of the key treatment agents, has also become a hot spot of research. In this study, a high temperature resistant strong adsorption rigid blocking agent (QW-1) was prepared using KH570 modified silica, acrylamide (AM) and allyltrimethylammonium chloride (TMAAC). QW-1 has good thermal stability, average particle size of 1.46 μm, water contact angle of 10.5°, has a strong hydrophilicity, can be well dispersed in water. The experimental results showed that when 2 wt% QW-1 was added to recipe A (4 wt% bentonite slurry+0.5 wt% DSP-1 (filtration loss depressant)), the API filtration loss decreased from 7.8 to 6.4 mL. After aging at 240 °C, the API loss of filtration was reduced from 21 to 14 mL, which has certain performance of high temperature loss of filtration. At the same time, it is effective in sealing 80–100 mesh and 100–120 mesh sand beds as well as 3 and 5 μm ceramic sand discs. Under the same conditions, the blocking performance was superior to silica (5 μm) and calcium carbonate (2.6 μm). In addition, the mechanism of action of QW-1 was further investigated. The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer, thus preventing further intrusion of drilling fluid into the formation.</p></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1995822624000931/pdfft?md5=d054ced22f964a6783ba49822b61f181&pid=1-s2.0-S1995822624000931-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and performance evaluation of high temperature resistant strong adsorption rigid blocking agent\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.03.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As drilling wells continue to move into deep ultra-deep layers, the requirements for temperature resistance of drilling fluid treatments are getting higher and higher. Among them, blocking agent, as one of the key treatment agents, has also become a hot spot of research. In this study, a high temperature resistant strong adsorption rigid blocking agent (QW-1) was prepared using KH570 modified silica, acrylamide (AM) and allyltrimethylammonium chloride (TMAAC). QW-1 has good thermal stability, average particle size of 1.46 μm, water contact angle of 10.5°, has a strong hydrophilicity, can be well dispersed in water. The experimental results showed that when 2 wt% QW-1 was added to recipe A (4 wt% bentonite slurry+0.5 wt% DSP-1 (filtration loss depressant)), the API filtration loss decreased from 7.8 to 6.4 mL. After aging at 240 °C, the API loss of filtration was reduced from 21 to 14 mL, which has certain performance of high temperature loss of filtration. At the same time, it is effective in sealing 80–100 mesh and 100–120 mesh sand beds as well as 3 and 5 μm ceramic sand discs. Under the same conditions, the blocking performance was superior to silica (5 μm) and calcium carbonate (2.6 μm). In addition, the mechanism of action of QW-1 was further investigated. The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer, thus preventing further intrusion of drilling fluid into the formation.</p></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1995822624000931/pdfft?md5=d054ced22f964a6783ba49822b61f181&pid=1-s2.0-S1995822624000931-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624000931\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624000931","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着钻井不断向超深层推进,对钻井液处理剂的耐温性要求也越来越高。其中,封堵剂作为关键处理剂之一,也成为研究热点。本研究利用 KH570 改性二氧化硅、丙烯酰胺(AM)和烯丙基三甲基氯化铵(TMAAC)制备了一种耐高温强吸附刚性封堵剂(QW-1)。QW-1 具有良好的热稳定性,平均粒径为 1.46 μm,水接触角为 10.5°,亲水性强,能很好地分散在水中。实验结果表明,在配方 A(4 wt% 膨润土浆+0.5 wt% DSP-1(过滤损失抑制剂))中添加 2 wt% QW-1,原料药的过滤损失从 7.8 mL 降至 6.4 mL。在 240 °C 下老化后,原料药过滤损失从 21 mL 降至 14 mL,具有一定的高温过滤损失性能。同时,它还能有效封堵 80-100 目和 100-120 目砂床以及 3 和 5 μm 陶瓷砂盘。在相同条件下,其封堵性能优于二氧化硅(5 μm)和碳酸钙(2.6 μm)。此外,还进一步研究了 QW-1 的作用机制。结果表明,分子链上带有酰胺和季铵基团的 QW-1 可通过氢键和静电作用吸附在粘土颗粒表面,形成致密的封堵层,从而阻止钻井液进一步侵入地层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and performance evaluation of high temperature resistant strong adsorption rigid blocking agent

As drilling wells continue to move into deep ultra-deep layers, the requirements for temperature resistance of drilling fluid treatments are getting higher and higher. Among them, blocking agent, as one of the key treatment agents, has also become a hot spot of research. In this study, a high temperature resistant strong adsorption rigid blocking agent (QW-1) was prepared using KH570 modified silica, acrylamide (AM) and allyltrimethylammonium chloride (TMAAC). QW-1 has good thermal stability, average particle size of 1.46 μm, water contact angle of 10.5°, has a strong hydrophilicity, can be well dispersed in water. The experimental results showed that when 2 wt% QW-1 was added to recipe A (4 wt% bentonite slurry+0.5 wt% DSP-1 (filtration loss depressant)), the API filtration loss decreased from 7.8 to 6.4 mL. After aging at 240 °C, the API loss of filtration was reduced from 21 to 14 mL, which has certain performance of high temperature loss of filtration. At the same time, it is effective in sealing 80–100 mesh and 100–120 mesh sand beds as well as 3 and 5 μm ceramic sand discs. Under the same conditions, the blocking performance was superior to silica (5 μm) and calcium carbonate (2.6 μm). In addition, the mechanism of action of QW-1 was further investigated. The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer, thus preventing further intrusion of drilling fluid into the formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
期刊最新文献
Characterization of chemical composition of high viscosity heavy oils: Macroscopic properties, and semi-quantitative analysis of molecular composition using high-resolution mass spectrometry The impact of industrial transformation on green economic efficiency: New evidence based on energy use Morphological complexity and azimuthal disorder of evolving pore space in low-maturity oil shale during in-situ thermal upgrading and impacts on permeability Influence of the mechanical properties of materials on the ultimate pressure-bearing capability of a pressure-preserving controller 3D rock physics template-based probabilistic estimation of tight sandstone reservoir properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1