介绍 Bed Word:用于社会语言学访谈转录的新型自动语音识别工具

IF 1.1 2区 文学 0 LANGUAGE & LINGUISTICS Linguistics Vanguard Pub Date : 2024-05-06 DOI:10.1515/lingvan-2023-0073
Marcus Ma, Lelia Glass, James Stanford
{"title":"介绍 Bed Word:用于社会语言学访谈转录的新型自动语音识别工具","authors":"Marcus Ma, Lelia Glass, James Stanford","doi":"10.1515/lingvan-2023-0073","DOIUrl":null,"url":null,"abstract":"We present Bed Word, a tool leveraging industrial automatic speech recognition (ASR) to transcribe sociophonetic data. While we find lower accuracy for minoritized English varieties, the resulting vowel measurements are overall very close to those derived from human-corrected gold data, so fully automated transcription may be suitable for some research purposes. For purposes requiring greater accuracy, we present a pipeline for human post-editing of automatically generated drafts, which we show is far faster than transcribing from scratch. Thus, we offer two ways to leverage ASR in sociolinguistic research: full automation and human post-editing. Augmenting the DARLA tool developed by Reddy and Stanford (2015b. Toward completely automated vowel extraction: Introducing DARLA. <jats:italic>Linguistics Vanguard</jats:italic> 1(1). 15–28), we hope that this resource can help speed up transcription for sociophonetic research.","PeriodicalId":55960,"journal":{"name":"Linguistics Vanguard","volume":"81 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing Bed Word: a new automated speech recognition tool for sociolinguistic interview transcription\",\"authors\":\"Marcus Ma, Lelia Glass, James Stanford\",\"doi\":\"10.1515/lingvan-2023-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Bed Word, a tool leveraging industrial automatic speech recognition (ASR) to transcribe sociophonetic data. While we find lower accuracy for minoritized English varieties, the resulting vowel measurements are overall very close to those derived from human-corrected gold data, so fully automated transcription may be suitable for some research purposes. For purposes requiring greater accuracy, we present a pipeline for human post-editing of automatically generated drafts, which we show is far faster than transcribing from scratch. Thus, we offer two ways to leverage ASR in sociolinguistic research: full automation and human post-editing. Augmenting the DARLA tool developed by Reddy and Stanford (2015b. Toward completely automated vowel extraction: Introducing DARLA. <jats:italic>Linguistics Vanguard</jats:italic> 1(1). 15–28), we hope that this resource can help speed up transcription for sociophonetic research.\",\"PeriodicalId\":55960,\"journal\":{\"name\":\"Linguistics Vanguard\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linguistics Vanguard\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1515/lingvan-2023-0073\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linguistics Vanguard","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1515/lingvan-2023-0073","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了利用工业自动语音识别(ASR)转录社会语音数据的工具 Bed Word。虽然我们发现少量英语变体的准确率较低,但由此产生的元音测量结果总体上非常接近于从人工校正的黄金数据中得出的结果,因此全自动转录可能适合某些研究目的。对于要求更高精度的目的,我们提出了一种对自动生成的草稿进行人工后期编辑的方法,我们证明这种方法比从头开始转录要快得多。因此,我们提供了两种在社会语言学研究中利用 ASR 的方法:完全自动化和人工后期编辑。增强 Reddy 和 Stanford 开发的 DARLA 工具(2015b.实现完全自动化的元音提取:介绍 DARLA。Linguistics Vanguard 1(1).15-28),我们希望这一资源能够帮助加快社会语音学研究的转录速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing Bed Word: a new automated speech recognition tool for sociolinguistic interview transcription
We present Bed Word, a tool leveraging industrial automatic speech recognition (ASR) to transcribe sociophonetic data. While we find lower accuracy for minoritized English varieties, the resulting vowel measurements are overall very close to those derived from human-corrected gold data, so fully automated transcription may be suitable for some research purposes. For purposes requiring greater accuracy, we present a pipeline for human post-editing of automatically generated drafts, which we show is far faster than transcribing from scratch. Thus, we offer two ways to leverage ASR in sociolinguistic research: full automation and human post-editing. Augmenting the DARLA tool developed by Reddy and Stanford (2015b. Toward completely automated vowel extraction: Introducing DARLA. Linguistics Vanguard 1(1). 15–28), we hope that this resource can help speed up transcription for sociophonetic research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
18.20%
发文量
105
期刊介绍: Linguistics Vanguard is a new channel for high quality articles and innovative approaches in all major fields of linguistics. This multimodal journal is published solely online and provides an accessible platform supporting both traditional and new kinds of publications. Linguistics Vanguard seeks to publish concise and up-to-date reports on the state of the art in linguistics as well as cutting-edge research papers. With its topical breadth of coverage and anticipated quick rate of production, it is one of the leading platforms for scientific exchange in linguistics. Its broad theoretical range, international scope, and diversity of article formats engage students and scholars alike. All topics within linguistics are welcome. The journal especially encourages submissions taking advantage of its new multimodal platform designed to integrate interactive content, including audio and video, images, maps, software code, raw data, and any other media that enhances the traditional written word. The novel platform and concise article format allows for rapid turnaround of submissions. Full peer review assures quality and enables authors to receive appropriate credit for their work. The journal publishes general submissions as well as special collections. Ideas for special collections may be submitted to the editors for consideration.
期刊最新文献
From sociolinguistic perception to strategic action in the study of social meaning. Sign recognition: the effect of parameters and features in sign mispronunciations. The use of the narrative final vowel -á by the Lingala-speaking youth of Kinshasa: from anterior to near/recent past Re-taking the field: resuming in-person fieldwork amid the COVID-19 pandemic Bibliographic bias and information-density sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1