Muhammad U. Zia, Prabhakaran Thanjavur Sambasivam, Dechao Chen, Shamsul A. Bhuiyan, Rebecca Ford, Qin Li
{"title":"管理作物生产系统中生物和非生物压力的碳点工具箱","authors":"Muhammad U. Zia, Prabhakaran Thanjavur Sambasivam, Dechao Chen, Shamsul A. Bhuiyan, Rebecca Ford, Qin Li","doi":"10.1002/eom2.12451","DOIUrl":null,"url":null,"abstract":"<p>The productivity of global crop production is under threat caused by various biotic and abiotic adverse conditions, such as plant diseases and pests, which are responsible for 20%–40% of global crop losses estimated at a value of USD 220 billion, and can be further exacerbated by climate change. Agricultural industries are calling for game-changer technologies to enable productive and sustainable farming. Carbon dots (C-dots) are carbon-based nanoparticles, smaller than 50 nm, exhibiting unique opto-electro-properties. They have been shown to have positive impact on managing diverse biotic and abiotic stresses faced by the crops. Owing to their versatile carbon chemistry, the surface functionalities of C-dots can be readily tuned to regulate plant physiological processes. This review is focussed on establishing the correlations between the physiochemical properties of C-dots and their impacts on plants growth and health. The summary of the literature demonstrates that C-dots hold great promise in improving plant tolerance to heat, drought, toxic chemicals, and invading pathogens.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12451","citationCount":"0","resultStr":"{\"title\":\"A carbon dot toolbox for managing biotic and abiotic stresses in crop production systems\",\"authors\":\"Muhammad U. Zia, Prabhakaran Thanjavur Sambasivam, Dechao Chen, Shamsul A. Bhuiyan, Rebecca Ford, Qin Li\",\"doi\":\"10.1002/eom2.12451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The productivity of global crop production is under threat caused by various biotic and abiotic adverse conditions, such as plant diseases and pests, which are responsible for 20%–40% of global crop losses estimated at a value of USD 220 billion, and can be further exacerbated by climate change. Agricultural industries are calling for game-changer technologies to enable productive and sustainable farming. Carbon dots (C-dots) are carbon-based nanoparticles, smaller than 50 nm, exhibiting unique opto-electro-properties. They have been shown to have positive impact on managing diverse biotic and abiotic stresses faced by the crops. Owing to their versatile carbon chemistry, the surface functionalities of C-dots can be readily tuned to regulate plant physiological processes. This review is focussed on establishing the correlations between the physiochemical properties of C-dots and their impacts on plants growth and health. The summary of the literature demonstrates that C-dots hold great promise in improving plant tolerance to heat, drought, toxic chemicals, and invading pathogens.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12451\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
全球作物生产的生产力正受到植物病虫害等各种生物和非生物不利条件的威胁,这些不利条件造成的损失占全球作物损失的 20%-40%,估计价值达 2200 亿美元,气候变化还会进一步加剧这种威胁。农业产业正在呼唤改变游戏规则的技术,以实现高产和可持续的耕作。碳点(C-dots)是小于 50 纳米的碳基纳米粒子,具有独特的光电特性。研究表明,它们对管理作物面临的各种生物和非生物压力具有积极影响。由于碳化学性质多变,C-点的表面功能可随时调整,以调节植物的生理过程。本综述的重点是建立 C 点的理化特性与其对植物生长和健康的影响之间的相关性。文献总结表明,C-点在提高植物对高温、干旱、有毒化学品和病原体入侵的耐受性方面大有可为。
A carbon dot toolbox for managing biotic and abiotic stresses in crop production systems
The productivity of global crop production is under threat caused by various biotic and abiotic adverse conditions, such as plant diseases and pests, which are responsible for 20%–40% of global crop losses estimated at a value of USD 220 billion, and can be further exacerbated by climate change. Agricultural industries are calling for game-changer technologies to enable productive and sustainable farming. Carbon dots (C-dots) are carbon-based nanoparticles, smaller than 50 nm, exhibiting unique opto-electro-properties. They have been shown to have positive impact on managing diverse biotic and abiotic stresses faced by the crops. Owing to their versatile carbon chemistry, the surface functionalities of C-dots can be readily tuned to regulate plant physiological processes. This review is focussed on establishing the correlations between the physiochemical properties of C-dots and their impacts on plants growth and health. The summary of the literature demonstrates that C-dots hold great promise in improving plant tolerance to heat, drought, toxic chemicals, and invading pathogens.