操作次数为 O(Nd) 的全 Adagrad 算法

Antoine Godichon-BaggioniLPSM, Wei LuLMI, Bruno PortierLMI
{"title":"操作次数为 O(Nd) 的全 Adagrad 算法","authors":"Antoine Godichon-BaggioniLPSM, Wei LuLMI, Bruno PortierLMI","doi":"arxiv-2405.01908","DOIUrl":null,"url":null,"abstract":"A novel approach is given to overcome the computational challenges of the\nfull-matrix Adaptive Gradient algorithm (Full AdaGrad) in stochastic\noptimization. By developing a recursive method that estimates the inverse of\nthe square root of the covariance of the gradient, alongside a streaming\nvariant for parameter updates, the study offers efficient and practical\nalgorithms for large-scale applications. This innovative strategy significantly\nreduces the complexity and resource demands typically associated with\nfull-matrix methods, enabling more effective optimization processes. Moreover,\nthe convergence rates of the proposed estimators and their asymptotic\nefficiency are given. Their effectiveness is demonstrated through numerical\nstudies.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"165 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Full Adagrad algorithm with O(Nd) operations\",\"authors\":\"Antoine Godichon-BaggioniLPSM, Wei LuLMI, Bruno PortierLMI\",\"doi\":\"arxiv-2405.01908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach is given to overcome the computational challenges of the\\nfull-matrix Adaptive Gradient algorithm (Full AdaGrad) in stochastic\\noptimization. By developing a recursive method that estimates the inverse of\\nthe square root of the covariance of the gradient, alongside a streaming\\nvariant for parameter updates, the study offers efficient and practical\\nalgorithms for large-scale applications. This innovative strategy significantly\\nreduces the complexity and resource demands typically associated with\\nfull-matrix methods, enabling more effective optimization processes. Moreover,\\nthe convergence rates of the proposed estimators and their asymptotic\\nefficiency are given. Their effectiveness is demonstrated through numerical\\nstudies.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.01908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究给出了一种新方法来克服随机优化中全矩阵自适应梯度算法(Full AdaGrad)的计算挑战。通过开发一种估计梯度协方差平方根倒数的递归方法,以及一种用于参数更新的流式变量,该研究为大规模应用提供了高效实用的算法。这种创新策略大大降低了通常与全矩阵方法相关的复杂性和资源需求,从而实现了更有效的优化过程。此外,还给出了所提估计器的收敛率及其渐近效率。通过数值研究证明了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Full Adagrad algorithm with O(Nd) operations
A novel approach is given to overcome the computational challenges of the full-matrix Adaptive Gradient algorithm (Full AdaGrad) in stochastic optimization. By developing a recursive method that estimates the inverse of the square root of the covariance of the gradient, alongside a streaming variant for parameter updates, the study offers efficient and practical algorithms for large-scale applications. This innovative strategy significantly reduces the complexity and resource demands typically associated with full-matrix methods, enabling more effective optimization processes. Moreover, the convergence rates of the proposed estimators and their asymptotic efficiency are given. Their effectiveness is demonstrated through numerical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1