改进距离相关性估计

Blanca E. Monroy-Castillo, M. A, Jácome, Ricardo Cao
{"title":"改进距离相关性估计","authors":"Blanca E. Monroy-Castillo, M. A, Jácome, Ricardo Cao","doi":"arxiv-2405.01958","DOIUrl":null,"url":null,"abstract":"Distance correlation is a novel class of multivariate dependence measure,\ntaking positive values between 0 and 1, and applicable to random vectors of\narbitrary dimensions, not necessarily equal. It offers several advantages over\nthe well-known Pearson correlation coefficient, the most important is that\ndistance correlation equals zero if and only if the random vectors are\nindependent. There are two different estimators of the distance correlation available in\nthe literature. The first one, proposed by Sz\\'ekely et al. (2007), is based on\nan asymptotically unbiased estimator of the distance covariance which turns out\nto be a V-statistic. The second one builds on an unbiased estimator of the\ndistance covariance proposed in Sz\\'ekely et al. (2014), proved to be an\nU-statistic by Sz\\'ekely and Huo (2016). This study evaluates their efficiency\n(mean squared error) and compares computational times for both methods under\ndifferent dependence structures. Under conditions of independence or\nnear-independence, the V-estimates are biased, while the U-estimator frequently\ncannot be computed due to negative values. To address this challenge, a convex\nlinear combination of the former estimators is proposed and studied, yielding\ngood results regardless of the level of dependence.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved distance correlation estimation\",\"authors\":\"Blanca E. Monroy-Castillo, M. A, Jácome, Ricardo Cao\",\"doi\":\"arxiv-2405.01958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distance correlation is a novel class of multivariate dependence measure,\\ntaking positive values between 0 and 1, and applicable to random vectors of\\narbitrary dimensions, not necessarily equal. It offers several advantages over\\nthe well-known Pearson correlation coefficient, the most important is that\\ndistance correlation equals zero if and only if the random vectors are\\nindependent. There are two different estimators of the distance correlation available in\\nthe literature. The first one, proposed by Sz\\\\'ekely et al. (2007), is based on\\nan asymptotically unbiased estimator of the distance covariance which turns out\\nto be a V-statistic. The second one builds on an unbiased estimator of the\\ndistance covariance proposed in Sz\\\\'ekely et al. (2014), proved to be an\\nU-statistic by Sz\\\\'ekely and Huo (2016). This study evaluates their efficiency\\n(mean squared error) and compares computational times for both methods under\\ndifferent dependence structures. Under conditions of independence or\\nnear-independence, the V-estimates are biased, while the U-estimator frequently\\ncannot be computed due to negative values. To address this challenge, a convex\\nlinear combination of the former estimators is proposed and studied, yielding\\ngood results regardless of the level of dependence.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.01958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

距离相关性是一类新的多元依赖性度量,其正值介于 0 和 1 之间,适用于任意维度的随机向量,不一定相等。与众所周知的皮尔逊相关系数相比,它有几个优点,其中最重要的是,如果且仅如果随机向量是独立的,则距离相关性等于零。文献中有两种不同的距离相关性估计值。第一个是 Sz\'ekely 等人(2007 年)提出的,它基于距离协方差的渐近无偏估计值,该估计值被证明是一个 V 统计量。第二个估计是基于 Sz\'ekely 等人(2014 年)提出的距离协方差无偏估计,Sz\'ekely 和 Huo(2016 年)证明它是一个 U 统计量。本研究评估了这两种方法的效率(均方误差),并比较了这两种方法在不同依赖结构下的计算时间。在独立或近似独立的条件下,V估计值是有偏差的,而U估计值经常由于负值而无法计算。为了解决这一难题,我们提出并研究了前两种估计方法的凸线性组合,无论依赖程度如何,都能获得良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved distance correlation estimation
Distance correlation is a novel class of multivariate dependence measure, taking positive values between 0 and 1, and applicable to random vectors of arbitrary dimensions, not necessarily equal. It offers several advantages over the well-known Pearson correlation coefficient, the most important is that distance correlation equals zero if and only if the random vectors are independent. There are two different estimators of the distance correlation available in the literature. The first one, proposed by Sz\'ekely et al. (2007), is based on an asymptotically unbiased estimator of the distance covariance which turns out to be a V-statistic. The second one builds on an unbiased estimator of the distance covariance proposed in Sz\'ekely et al. (2014), proved to be an U-statistic by Sz\'ekely and Huo (2016). This study evaluates their efficiency (mean squared error) and compares computational times for both methods under different dependence structures. Under conditions of independence or near-independence, the V-estimates are biased, while the U-estimator frequently cannot be computed due to negative values. To address this challenge, a convex linear combination of the former estimators is proposed and studied, yielding good results regardless of the level of dependence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1