{"title":"具有可调机电响应的皱褶和纤维状导电绷带,可用于佩戴式应变传感器","authors":"Xin Xu, Yang Liu, Hongwei Zhou, Zhong Li, Ruhai Wang, Birui Jin, Hao Liu, Qianqian Fan, Yunsheng Fang, Na Liu, Dong Wang, Feng Xu, Guoxu Zhao","doi":"10.1007/s42765-024-00417-5","DOIUrl":null,"url":null,"abstract":"<div><p>Wearable strain sensors (WSSs) have found widespread applications, where the key is to optimize their sensing and wearing performances. However, the intricate material designs for developing WSSs often rely on costly reagents and/or complex processes, which bring barriers to their large-scale production and use. Herein, a facile and affordable (material cost of < $0.002/cm<sup>2</sup>) method is presented for fabricating conductive bandage (CB)-based WSSs by electrospraying a carbon nanotube (CNT) layer on commercial self-adhesive bandages with excellent biosafety, stretchability, mechanical compliance, breathability and cost effectiveness. The wrinkled and fibrous structures of self-adhesive bandages were rationally leverage to control the geometry of CNT layer, thereby ensuring tunable mechanoelectrical sensitivities (gauge factors of 2 ~ 850) of CBs. Moreover, a strain-sensing mechanism directly mediated by the highly wrinkled microstructure is unveiled, which can work in synergy with a training-loosened-fibrous microstructure. The excellent performance of CBs for monitoring full-range strain signals in human bodies was further demonstrated. CBs would possess great potential for being developed into WSSs because of their outstanding cost-performance ratio.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"1174 - 1187"},"PeriodicalIF":17.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wrinkled and Fibrous Conductive Bandages with Tunable Mechanoelectrical Response Toward Wearable Strain Sensors\",\"authors\":\"Xin Xu, Yang Liu, Hongwei Zhou, Zhong Li, Ruhai Wang, Birui Jin, Hao Liu, Qianqian Fan, Yunsheng Fang, Na Liu, Dong Wang, Feng Xu, Guoxu Zhao\",\"doi\":\"10.1007/s42765-024-00417-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wearable strain sensors (WSSs) have found widespread applications, where the key is to optimize their sensing and wearing performances. However, the intricate material designs for developing WSSs often rely on costly reagents and/or complex processes, which bring barriers to their large-scale production and use. Herein, a facile and affordable (material cost of < $0.002/cm<sup>2</sup>) method is presented for fabricating conductive bandage (CB)-based WSSs by electrospraying a carbon nanotube (CNT) layer on commercial self-adhesive bandages with excellent biosafety, stretchability, mechanical compliance, breathability and cost effectiveness. The wrinkled and fibrous structures of self-adhesive bandages were rationally leverage to control the geometry of CNT layer, thereby ensuring tunable mechanoelectrical sensitivities (gauge factors of 2 ~ 850) of CBs. Moreover, a strain-sensing mechanism directly mediated by the highly wrinkled microstructure is unveiled, which can work in synergy with a training-loosened-fibrous microstructure. The excellent performance of CBs for monitoring full-range strain signals in human bodies was further demonstrated. CBs would possess great potential for being developed into WSSs because of their outstanding cost-performance ratio.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 4\",\"pages\":\"1174 - 1187\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00417-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00417-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
可穿戴应变传感器(WSS)已得到广泛应用,其关键在于优化传感和穿戴性能。然而,用于开发 WSS 的复杂材料设计往往依赖于昂贵的试剂和/或复杂的工艺,这给其大规模生产和使用带来了障碍。本文提出了一种简便、经济(材料成本为 0.002 美元/平方厘米)的方法,通过在商用自粘绷带上电喷涂碳纳米管(CNT)层来制造基于导电绷带(CB)的 WSS,该方法具有出色的生物安全性、伸展性、机械顺应性、透气性和成本效益。通过合理利用自粘绷带的褶皱和纤维结构来控制碳纳米管层的几何形状,从而确保了 CBs 的可调机电灵敏度(测量系数为 2 ~ 850)。此外,还揭示了一种由高度起皱的微结构直接介导的应变传感机制,它可以与训练松弛的纤维微结构协同工作。CBs 在监测人体全范围应变信号方面的卓越性能得到了进一步证实。由于 CBs 具有出色的性价比,因此具有开发成 WSS 的巨大潜力。
Wrinkled and Fibrous Conductive Bandages with Tunable Mechanoelectrical Response Toward Wearable Strain Sensors
Wearable strain sensors (WSSs) have found widespread applications, where the key is to optimize their sensing and wearing performances. However, the intricate material designs for developing WSSs often rely on costly reagents and/or complex processes, which bring barriers to their large-scale production and use. Herein, a facile and affordable (material cost of < $0.002/cm2) method is presented for fabricating conductive bandage (CB)-based WSSs by electrospraying a carbon nanotube (CNT) layer on commercial self-adhesive bandages with excellent biosafety, stretchability, mechanical compliance, breathability and cost effectiveness. The wrinkled and fibrous structures of self-adhesive bandages were rationally leverage to control the geometry of CNT layer, thereby ensuring tunable mechanoelectrical sensitivities (gauge factors of 2 ~ 850) of CBs. Moreover, a strain-sensing mechanism directly mediated by the highly wrinkled microstructure is unveiled, which can work in synergy with a training-loosened-fibrous microstructure. The excellent performance of CBs for monitoring full-range strain signals in human bodies was further demonstrated. CBs would possess great potential for being developed into WSSs because of their outstanding cost-performance ratio.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.