多矩阵变量分布

José A. Díaz-García, Francisco J. Caro-Lopera
{"title":"多矩阵变量分布","authors":"José A. Díaz-García, Francisco J. Caro-Lopera","doi":"arxiv-2405.02498","DOIUrl":null,"url":null,"abstract":"A new family of distributions indexed by the class of matrix variate\ncontoured elliptically distribution is proposed as an extension of some\nbimatrix variate distributions. The termed \\emph{multimatrix variate\ndistributions} open new perspectives for the classical distribution theory,\nusually based on probabilistic independent models and preferred untested\nfitting laws. Most of the multimatrix models here derived are invariant under\nthe spherical family, a fact that solves the testing and prior knowledge of the\nunderlying distributions and elucidates the statistical methodology in\ncontrasts with some weakness of current studies as copulas. The paper also\nincludes a number of diverse special cases, properties and generalisations. The\nnew joint distributions allows several unthinkable combinations for copulas,\nsuch as scalars, vectors and matrices, all of them adjustable to the required\nmodels of the experts. The proposed joint distributions are also easily\ncomputable, then several applications are plausible. In particular, an\nexhaustive example in molecular docking on SARS-CoV-2 presents the results on\nmatrix dependent samples.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimatrix variate distributions\",\"authors\":\"José A. Díaz-García, Francisco J. Caro-Lopera\",\"doi\":\"arxiv-2405.02498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new family of distributions indexed by the class of matrix variate\\ncontoured elliptically distribution is proposed as an extension of some\\nbimatrix variate distributions. The termed \\\\emph{multimatrix variate\\ndistributions} open new perspectives for the classical distribution theory,\\nusually based on probabilistic independent models and preferred untested\\nfitting laws. Most of the multimatrix models here derived are invariant under\\nthe spherical family, a fact that solves the testing and prior knowledge of the\\nunderlying distributions and elucidates the statistical methodology in\\ncontrasts with some weakness of current studies as copulas. The paper also\\nincludes a number of diverse special cases, properties and generalisations. The\\nnew joint distributions allows several unthinkable combinations for copulas,\\nsuch as scalars, vectors and matrices, all of them adjustable to the required\\nmodels of the experts. The proposed joint distributions are also easily\\ncomputable, then several applications are plausible. In particular, an\\nexhaustive example in molecular docking on SARS-CoV-2 presents the results on\\nmatrix dependent samples.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为一些矩阵变异分布的扩展,提出了一个以矩阵变异椭圆分布类为索引的新分布族。多矩阵变分分布为经典分布理论开辟了新的视角,经典分布理论通常基于独立的概率模型和未经测试的拟合法则。本文推导出的大多数多矩阵模型在球面族下是不变的,这一事实解决了基础分布的测试和先验知识问题,并阐明了与当前研究中的一些弱点(如协整)形成对比的统计方法。本文还包括许多不同的特例、性质和概括。新的联合分布允许对 copulas 进行几种难以想象的组合,如标量、向量和矩阵,所有这些都可根据专家所需的模型进行调整。所提出的联合分布也很容易计算,因此有几种应用是可行的。特别是,SARS-CoV-2 分子对接中的一个详尽例子展示了矩阵依赖样本的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimatrix variate distributions
A new family of distributions indexed by the class of matrix variate contoured elliptically distribution is proposed as an extension of some bimatrix variate distributions. The termed \emph{multimatrix variate distributions} open new perspectives for the classical distribution theory, usually based on probabilistic independent models and preferred untested fitting laws. Most of the multimatrix models here derived are invariant under the spherical family, a fact that solves the testing and prior knowledge of the underlying distributions and elucidates the statistical methodology in contrasts with some weakness of current studies as copulas. The paper also includes a number of diverse special cases, properties and generalisations. The new joint distributions allows several unthinkable combinations for copulas, such as scalars, vectors and matrices, all of them adjustable to the required models of the experts. The proposed joint distributions are also easily computable, then several applications are plausible. In particular, an exhaustive example in molecular docking on SARS-CoV-2 presents the results on matrix dependent samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1