IMERG QPE 产品能否捕捉到城市洪水规模的暴雨?

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-07-10 Epub Date: 2024-05-06 DOI:10.1016/j.scitotenv.2024.173022
Jinyu Xu, Youcun Qi, Donghuan Li, Zhanfeng Zhao
{"title":"IMERG QPE 产品能否捕捉到城市洪水规模的暴雨?","authors":"Jinyu Xu, Youcun Qi, Donghuan Li, Zhanfeng Zhao","doi":"10.1016/j.scitotenv.2024.173022","DOIUrl":null,"url":null,"abstract":"<p><p>Urban areas are increasingly vulnerable to sudden flooding disasters caused by intense rainfall and high imperviousness degree, resulting in great economic losses and human casualties. Interactions between rainfall data and urban catchment characteristics highlight the urgent need of accurate and effective precipitation data to apply in reliable hydrological simulations. However, it remains a challenge to obtain accurate rainfall datasets on such small scales in urban areas. As satellite remote sensing is the only method that can achieve global observation, it is important to evaluate satellite precipitation products in their ability to accurately capture intense precipitation on urban flood scales. This study evaluates the performance of the latest version 06B (V06B) Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) in North China Plain, with using the Radar-Gauge merged precipitation estimates as reference data. First, it could be concluded that IMERG fails to accurately estimate precipitation in the whole study area, having the problem of overestimating light precipitation and underestimating heavy precipitation. Second, results show that IMERG has poor ability to capture heavy precipitation on small scales, with the percentage of Hit nearly 0 and the percentage of Miss higher than 40 % for all the precipitation cases. Third, with the expansion of heavy precipitation centers' coverage, the problem of IMERG not to detect heavy precipitation gets mitigated, with the percentage of Miss decreasing by 14 % (19 %). However, the ability to capture both spatial location and precipitation intensity is still not good, the percentage of Hit ranging from 0.05 % to 7 %, without obvious improvement. When IMERG is able to capture the center of strong precipitation, it also tends to overestimate the weak precipitation around the center of strong precipitation. Results of this study provide an improved understanding of how well the V06B IMERG products capture the heavy precipitation center at small scales in urban areas, which will be useful for both developers and users of IMERG.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can IMERG QPE product capture the heavy rain on urban flood scale?\",\"authors\":\"Jinyu Xu, Youcun Qi, Donghuan Li, Zhanfeng Zhao\",\"doi\":\"10.1016/j.scitotenv.2024.173022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urban areas are increasingly vulnerable to sudden flooding disasters caused by intense rainfall and high imperviousness degree, resulting in great economic losses and human casualties. Interactions between rainfall data and urban catchment characteristics highlight the urgent need of accurate and effective precipitation data to apply in reliable hydrological simulations. However, it remains a challenge to obtain accurate rainfall datasets on such small scales in urban areas. As satellite remote sensing is the only method that can achieve global observation, it is important to evaluate satellite precipitation products in their ability to accurately capture intense precipitation on urban flood scales. This study evaluates the performance of the latest version 06B (V06B) Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) in North China Plain, with using the Radar-Gauge merged precipitation estimates as reference data. First, it could be concluded that IMERG fails to accurately estimate precipitation in the whole study area, having the problem of overestimating light precipitation and underestimating heavy precipitation. Second, results show that IMERG has poor ability to capture heavy precipitation on small scales, with the percentage of Hit nearly 0 and the percentage of Miss higher than 40 % for all the precipitation cases. Third, with the expansion of heavy precipitation centers' coverage, the problem of IMERG not to detect heavy precipitation gets mitigated, with the percentage of Miss decreasing by 14 % (19 %). However, the ability to capture both spatial location and precipitation intensity is still not good, the percentage of Hit ranging from 0.05 % to 7 %, without obvious improvement. When IMERG is able to capture the center of strong precipitation, it also tends to overestimate the weak precipitation around the center of strong precipitation. Results of this study provide an improved understanding of how well the V06B IMERG products capture the heavy precipitation center at small scales in urban areas, which will be useful for both developers and users of IMERG.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.173022\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.173022","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市地区越来越容易受到强降雨和高不透水度引起的突发性洪水灾害的影响,造成巨大的经济损失和人员伤亡。降雨数据与城市集水区特征之间的相互影响突出表明,迫切需要准确有效的降雨数据来进行可靠的水文模拟。然而,在城市地区如此小的范围内获取准确的降雨数据集仍然是一项挑战。由于卫星遥感是实现全球观测的唯一方法,因此评估卫星降水产品准确捕捉城市洪水尺度强降水的能力非常重要。本研究以雷达-测站合并降水估算值为参考数据,评估了最新的全球降水测量多卫星综合检索(IMERG)06B(V06B)版本在华北平原的性能。结果表明:首先,IMERG 未能准确估算整个研究区域的降水量,存在高估小降水量和低估大降水量的问题。其次,结果表明 IMERG 对小尺度强降水的捕捉能力较差,在所有降水情况下,Hit 百分比几乎为 0,Miss 百分比高于 40%。第三,随着强降水中心覆盖范围的扩大,IMERG 检测不到强降水的问题有所缓解,漏报率下降了 14%(19%)。但是,IMERG 对空间位置和降水强度的捕捉能力仍然不佳,误报率从 0.05 % 到 7 % 不等,没有明显改善。当 IMERG 能够捕捉到强降水中心时,它也往往会高估强降水中心周围的弱降水。本研究的结果有助于更好地了解 V06B IMERG 产品对城市地区小尺度强降水中心的捕捉能力,这对 IMERG 的开发者和使用者都将有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can IMERG QPE product capture the heavy rain on urban flood scale?

Urban areas are increasingly vulnerable to sudden flooding disasters caused by intense rainfall and high imperviousness degree, resulting in great economic losses and human casualties. Interactions between rainfall data and urban catchment characteristics highlight the urgent need of accurate and effective precipitation data to apply in reliable hydrological simulations. However, it remains a challenge to obtain accurate rainfall datasets on such small scales in urban areas. As satellite remote sensing is the only method that can achieve global observation, it is important to evaluate satellite precipitation products in their ability to accurately capture intense precipitation on urban flood scales. This study evaluates the performance of the latest version 06B (V06B) Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) in North China Plain, with using the Radar-Gauge merged precipitation estimates as reference data. First, it could be concluded that IMERG fails to accurately estimate precipitation in the whole study area, having the problem of overestimating light precipitation and underestimating heavy precipitation. Second, results show that IMERG has poor ability to capture heavy precipitation on small scales, with the percentage of Hit nearly 0 and the percentage of Miss higher than 40 % for all the precipitation cases. Third, with the expansion of heavy precipitation centers' coverage, the problem of IMERG not to detect heavy precipitation gets mitigated, with the percentage of Miss decreasing by 14 % (19 %). However, the ability to capture both spatial location and precipitation intensity is still not good, the percentage of Hit ranging from 0.05 % to 7 %, without obvious improvement. When IMERG is able to capture the center of strong precipitation, it also tends to overestimate the weak precipitation around the center of strong precipitation. Results of this study provide an improved understanding of how well the V06B IMERG products capture the heavy precipitation center at small scales in urban areas, which will be useful for both developers and users of IMERG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
A spatio-temporal analysis of environmental fate and transport processes of pesticides and their transformation products in agricultural landscapes dominated by subsurface drainage with SWAT. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. Effects of ambient air pollution from shipping on mortality: A systematic review. Exploring avian exposure to parent polycyclic aromatic hydrocarbons (PAHs): Using the common eider Somateria mollissima in a global context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1