了解长江三角洲某地区的二次粒子:质谱测量的启示。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-07-10 Epub Date: 2024-05-07 DOI:10.1016/j.scitotenv.2024.172994
Wenfei Zhu, Jialin Shi, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Jun Chen, Shengrong Lou, Min Hu, Song Guo
{"title":"了解长江三角洲某地区的二次粒子:质谱测量的启示。","authors":"Wenfei Zhu, Jialin Shi, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Jun Chen, Shengrong Lou, Min Hu, Song Guo","doi":"10.1016/j.scitotenv.2024.172994","DOIUrl":null,"url":null,"abstract":"<p><p>Submicron particulate matter (PM<sub>1</sub>) poses significant risks to health risks and global climate. In this study, secondary organic aerosols (SOA) and inorganic compositions were examined for their physicochemical characteristics and evolution using high-resolution aerosol instruments in Changzhou over one-month period. The results showed that transport accompanied by regional static conditions leaded to the occurrence of heavy pollution. In addition, regional generation and local emissions also leaded to the occurrence of light and moderate pollution during the observation period in Changzhou. Organic aerosols (OA) and nitrate (NO<sub>3</sub><sup>-</sup>) accounted for 45 % and 23 % of PM<sub>1</sub>, respectively. The increase in PM<sub>1</sub> was dominated by the contribution of NO<sub>3</sub><sup>-</sup> and OA. SOA was dominance in OA (63 % with 40 % MO-OOA), which was higher than primary organic aerosols (POA). Besides, photochemical reactions and the high oxidizing nature of the urban atmosphere promoted the production of OA, especially MO-OOA in Changzhou. Our results highlight that secondary particles contribute significantly to PM pollution in Changzhou, underlining the importance of controlling emissions of gaseous precursors, especially under high oxidation conditions.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding secondary particles in a regional site of Yangtze River Delta: Insights from mass spectrometric measurement.\",\"authors\":\"Wenfei Zhu, Jialin Shi, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Jun Chen, Shengrong Lou, Min Hu, Song Guo\",\"doi\":\"10.1016/j.scitotenv.2024.172994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Submicron particulate matter (PM<sub>1</sub>) poses significant risks to health risks and global climate. In this study, secondary organic aerosols (SOA) and inorganic compositions were examined for their physicochemical characteristics and evolution using high-resolution aerosol instruments in Changzhou over one-month period. The results showed that transport accompanied by regional static conditions leaded to the occurrence of heavy pollution. In addition, regional generation and local emissions also leaded to the occurrence of light and moderate pollution during the observation period in Changzhou. Organic aerosols (OA) and nitrate (NO<sub>3</sub><sup>-</sup>) accounted for 45 % and 23 % of PM<sub>1</sub>, respectively. The increase in PM<sub>1</sub> was dominated by the contribution of NO<sub>3</sub><sup>-</sup> and OA. SOA was dominance in OA (63 % with 40 % MO-OOA), which was higher than primary organic aerosols (POA). Besides, photochemical reactions and the high oxidizing nature of the urban atmosphere promoted the production of OA, especially MO-OOA in Changzhou. Our results highlight that secondary particles contribute significantly to PM pollution in Changzhou, underlining the importance of controlling emissions of gaseous precursors, especially under high oxidation conditions.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.172994\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.172994","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

亚微米颗粒物(PM1)对健康风险和全球气候构成重大威胁。本研究利用高分辨率气溶胶仪器,对常州地区为期一个月的二次有机气溶胶(SOA)和无机成分的物理化学特征和演变过程进行了研究。结果表明,区域静态条件下的传输导致了重污染的发生。此外,区域生成和本地排放也导致常州在观测期间出现轻度和中度污染。有机气溶胶(OA)和硝酸盐(NO3-)分别占 PM1 的 45% 和 23%。PM1的增加主要是由于NO3-和OA的贡献。SOA 在 OA 中占主导地位(63%,MO-OOA 占 40%),高于原始有机气溶胶(POA)。此外,光化学反应和城市大气的高氧化性促进了 OA 的生成,尤其是常州的 MO-OOA。我们的研究结果突出表明,二次颗粒物对常州的可吸入颗粒物污染有重要影响,这也强调了控制气态前体物排放的重要性,尤其是在高氧化条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding secondary particles in a regional site of Yangtze River Delta: Insights from mass spectrometric measurement.

Submicron particulate matter (PM1) poses significant risks to health risks and global climate. In this study, secondary organic aerosols (SOA) and inorganic compositions were examined for their physicochemical characteristics and evolution using high-resolution aerosol instruments in Changzhou over one-month period. The results showed that transport accompanied by regional static conditions leaded to the occurrence of heavy pollution. In addition, regional generation and local emissions also leaded to the occurrence of light and moderate pollution during the observation period in Changzhou. Organic aerosols (OA) and nitrate (NO3-) accounted for 45 % and 23 % of PM1, respectively. The increase in PM1 was dominated by the contribution of NO3- and OA. SOA was dominance in OA (63 % with 40 % MO-OOA), which was higher than primary organic aerosols (POA). Besides, photochemical reactions and the high oxidizing nature of the urban atmosphere promoted the production of OA, especially MO-OOA in Changzhou. Our results highlight that secondary particles contribute significantly to PM pollution in Changzhou, underlining the importance of controlling emissions of gaseous precursors, especially under high oxidation conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
A spatio-temporal analysis of environmental fate and transport processes of pesticides and their transformation products in agricultural landscapes dominated by subsurface drainage with SWAT. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. Effects of ambient air pollution from shipping on mortality: A systematic review. Exploring avian exposure to parent polycyclic aromatic hydrocarbons (PAHs): Using the common eider Somateria mollissima in a global context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1