妊娠期肾脏钙和镁的处理:建模与分析

Shervin Hakimi, Pritha Dutta, Anita T Layton
{"title":"妊娠期肾脏钙和镁的处理:建模与分析","authors":"Shervin Hakimi, Pritha Dutta, Anita T Layton","doi":"10.1152/ajprenal.00001.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnancy is associated with elevated demand of most nutrients, with many trace elements and minerals critical for the development of fetus. In particular, calcium (Ca<sup>2+</sup>) and magnesium (Mg<sup>2+</sup>) are essential for cellular function, and their deficiency can lead to impaired fetal growth. A key contributor to the homeostasis of these ions is the kidney, which in a pregnant rat undergoes major changes in morphology, hemodynamics, and molecular structure. The goal of this study is to unravel the functional implications of these pregnancy-induced changes in renal handling of Ca<sup>2+</sup> and Mg<sup>2+</sup>, two cations that are essential in a healthy pregnancy. To achieve that goal, we developed computational models of electrolyte and water transport along the nephrons of a rat in mid and late pregnancy. Model simulations reveal a substantial increase in the reabsorption of Mg<sup>2+</sup> along the proximal tubules and thick ascending limbs. In contrast, the reabsorption of Ca<sup>2+</sup> is increased in the proximal tubules but decreased in the thick ascending limbs, due to the lower transepithelial concentration gradient of Ca<sup>2+</sup> along the latter. Despite the enhanced transport capacity, the marked increase in glomerular filtration rate results in elevated urinary excretions of Ca<sup>2+</sup> and Mg<sup>2+</sup> in pregnancy. Furthermore, we conducted simulations of hypocalcemia and hypomagnesemia. We found that hypocalcemia lowers Ca<sup>2+</sup> excretion substantially more than Mg<sup>2+</sup> excretion, with this effect being more pronounced in virgin rats than in pregnant ones. Conversely, hypomagnesemia reduces the excretion of Mg<sup>2+</sup> and Ca<sup>2+</sup> to more similar degrees. These differences can be explained by the greater sensitivity of the calcium-sensing receptor (CaSR) to Ca<sup>2+</sup> compared with Mg<sup>2+</sup>.<b>NEW & NOTEWORTHY</b> A growing fetus' demands of minerals, notably calcium and magnesium, necessitate adaptations in pregnancy. In particular, the kidney undergoes major changes in morphology, hemodynamics, and molecular structure. This computational modeling study provides insights into how these pregnancy-induced renal adaptation impact calcium and magnesium transport along different nephron segments. Model simulations indicate that, despite the enhanced transport capacity, the marked increase in glomerular filtration rate results in elevated urinary excretions of calcium and magnesium in pregnancy.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F77-F90"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renal calcium and magnesium handling during pregnancy: modeling and analysis.\",\"authors\":\"Shervin Hakimi, Pritha Dutta, Anita T Layton\",\"doi\":\"10.1152/ajprenal.00001.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pregnancy is associated with elevated demand of most nutrients, with many trace elements and minerals critical for the development of fetus. In particular, calcium (Ca<sup>2+</sup>) and magnesium (Mg<sup>2+</sup>) are essential for cellular function, and their deficiency can lead to impaired fetal growth. A key contributor to the homeostasis of these ions is the kidney, which in a pregnant rat undergoes major changes in morphology, hemodynamics, and molecular structure. The goal of this study is to unravel the functional implications of these pregnancy-induced changes in renal handling of Ca<sup>2+</sup> and Mg<sup>2+</sup>, two cations that are essential in a healthy pregnancy. To achieve that goal, we developed computational models of electrolyte and water transport along the nephrons of a rat in mid and late pregnancy. Model simulations reveal a substantial increase in the reabsorption of Mg<sup>2+</sup> along the proximal tubules and thick ascending limbs. In contrast, the reabsorption of Ca<sup>2+</sup> is increased in the proximal tubules but decreased in the thick ascending limbs, due to the lower transepithelial concentration gradient of Ca<sup>2+</sup> along the latter. Despite the enhanced transport capacity, the marked increase in glomerular filtration rate results in elevated urinary excretions of Ca<sup>2+</sup> and Mg<sup>2+</sup> in pregnancy. Furthermore, we conducted simulations of hypocalcemia and hypomagnesemia. We found that hypocalcemia lowers Ca<sup>2+</sup> excretion substantially more than Mg<sup>2+</sup> excretion, with this effect being more pronounced in virgin rats than in pregnant ones. Conversely, hypomagnesemia reduces the excretion of Mg<sup>2+</sup> and Ca<sup>2+</sup> to more similar degrees. These differences can be explained by the greater sensitivity of the calcium-sensing receptor (CaSR) to Ca<sup>2+</sup> compared with Mg<sup>2+</sup>.<b>NEW & NOTEWORTHY</b> A growing fetus' demands of minerals, notably calcium and magnesium, necessitate adaptations in pregnancy. In particular, the kidney undergoes major changes in morphology, hemodynamics, and molecular structure. This computational modeling study provides insights into how these pregnancy-induced renal adaptation impact calcium and magnesium transport along different nephron segments. Model simulations indicate that, despite the enhanced transport capacity, the marked increase in glomerular filtration rate results in elevated urinary excretions of calcium and magnesium in pregnancy.</p>\",\"PeriodicalId\":93867,\"journal\":{\"name\":\"American journal of physiology. Renal physiology\",\"volume\":\" \",\"pages\":\"F77-F90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Renal physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00001.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00001.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

妊娠期对大多数营养素的需求都会增加,其中许多微量元素和矿物质对胎儿的发育至关重要。其中,钙(Ca2+)和镁(Mg2+)对细胞功能至关重要,它们的缺乏会导致胎儿发育受损。对这些离子的平衡起关键作用的是肾脏,怀孕大鼠的肾脏在形态、血液动力学和分子结构方面都发生了重大变化。本研究的目的是揭示妊娠引起的这些变化对肾脏处理 Ca2+ 和 Mg2+ 的功能影响。我们建立了妊娠中期和晚期大鼠肾小球电解质和水转运的计算模型。模型模拟显示,近端肾小管和粗升支对 Mg2+ 的重吸收量大幅增加。相比之下,近端肾小管对 Ca2+ 的重吸收增加,但粗升支对 Ca2+ 的重吸收减少,原因是粗升支的 Ca2+ 经上皮浓度梯度较低。尽管运输能力增强,但肾小球滤过率的显著增加导致妊娠期尿液中 Ca2+ 和 Mg2+ 的排泄量增加。此外,我们还模拟了低钙血症和低镁血症。我们发现,低钙血症降低 Ca2+排泄量的程度远远高于降低 Mg2+排泄量的程度,尤其是对处女鼠而言。相反,低镁血症减少 Mg2+ 和 Ca2+ 排泄的程度较为相似。与 Mg2+ 相比,钙感应受体(CaSR)对 Ca2+ 的敏感性更高,这可以解释这些差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Renal calcium and magnesium handling during pregnancy: modeling and analysis.

Pregnancy is associated with elevated demand of most nutrients, with many trace elements and minerals critical for the development of fetus. In particular, calcium (Ca2+) and magnesium (Mg2+) are essential for cellular function, and their deficiency can lead to impaired fetal growth. A key contributor to the homeostasis of these ions is the kidney, which in a pregnant rat undergoes major changes in morphology, hemodynamics, and molecular structure. The goal of this study is to unravel the functional implications of these pregnancy-induced changes in renal handling of Ca2+ and Mg2+, two cations that are essential in a healthy pregnancy. To achieve that goal, we developed computational models of electrolyte and water transport along the nephrons of a rat in mid and late pregnancy. Model simulations reveal a substantial increase in the reabsorption of Mg2+ along the proximal tubules and thick ascending limbs. In contrast, the reabsorption of Ca2+ is increased in the proximal tubules but decreased in the thick ascending limbs, due to the lower transepithelial concentration gradient of Ca2+ along the latter. Despite the enhanced transport capacity, the marked increase in glomerular filtration rate results in elevated urinary excretions of Ca2+ and Mg2+ in pregnancy. Furthermore, we conducted simulations of hypocalcemia and hypomagnesemia. We found that hypocalcemia lowers Ca2+ excretion substantially more than Mg2+ excretion, with this effect being more pronounced in virgin rats than in pregnant ones. Conversely, hypomagnesemia reduces the excretion of Mg2+ and Ca2+ to more similar degrees. These differences can be explained by the greater sensitivity of the calcium-sensing receptor (CaSR) to Ca2+ compared with Mg2+.NEW & NOTEWORTHY A growing fetus' demands of minerals, notably calcium and magnesium, necessitate adaptations in pregnancy. In particular, the kidney undergoes major changes in morphology, hemodynamics, and molecular structure. This computational modeling study provides insights into how these pregnancy-induced renal adaptation impact calcium and magnesium transport along different nephron segments. Model simulations indicate that, despite the enhanced transport capacity, the marked increase in glomerular filtration rate results in elevated urinary excretions of calcium and magnesium in pregnancy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sex differences in the adrenal circadian clock: a role for BMAL1 in the regulation of urinary aldosterone excretion and renal electrolyte balance in mice. Phosphoproteomic response to epidermal growth factor in native rat inner medullary collecting duct. Western diet exacerbates a murine model of Balkan nephropathy. Intestinal Barrier Function Declines During Polycystic Kidney Disease Progression. Remote organ cancer induces kidney injury, inflammation, and fibrosis and adversely alters renal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1