植物防御中的致病相关-1 蛋白:调控和功能多样性。

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Biotechnology Pub Date : 2024-05-08 DOI:10.1080/07388551.2024.2344583
Talha Javed, Wenzhi Wang, Benpeng Yang, Linbo Shen, Tingting Sun, San-Ji Gao, Shuzhen Zhang
{"title":"植物防御中的致病相关-1 蛋白:调控和功能多样性。","authors":"Talha Javed, Wenzhi Wang, Benpeng Yang, Linbo Shen, Tingting Sun, San-Ji Gao, Shuzhen Zhang","doi":"10.1080/07388551.2024.2344583","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathogenesis related-1 proteins in plant defense: regulation and functional diversity.\",\"authors\":\"Talha Javed, Wenzhi Wang, Benpeng Yang, Linbo Shen, Tingting Sun, San-Ji Gao, Shuzhen Zhang\",\"doi\":\"10.1080/07388551.2024.2344583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2024.2344583\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2344583","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与气候变化相关的环境胁迫会对作物生产力产生负面影响,并对可持续农业构成威胁。植物具有非凡的先天能力,能够检测到广泛的环境线索,包括触发胁迫诱导调控网络和信号通路的胁迫。植物致病相关-1(PR-1)蛋白的转录激活首次被确定为系统获得性抗逆的一个组成部分。与它们在免疫防御中的核心作用相一致,PR-1 在不同植物物种中的过表达经常被用作水杨酸(SA)介导的防御反应的标记。最近的研究进展表明了毒力效应因子、水杨酸信号级联和表观遗传修饰如何在环境胁迫下调节 PR-1 的表达。我们和其他研究人员发现,涉及 PR-1s 的转录调控网络可用于提高植物对胁迫的恢复能力。这些研究结果为该领域注入了新的活力,并为人们提供了期待已久的关于 PR-1s 在极端环境胁迫下可能发挥的功能的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pathogenesis related-1 proteins in plant defense: regulation and functional diversity.

Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
期刊最新文献
Farm to fork applications: how vibrational spectroscopy can be used along the whole value chain? Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Ascorbic acid: a metabolite switch for designing stress-smart crops. Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1