{"title":"利用前列腺磁共振成像和风险因素预测临床重大前列腺癌的模型。","authors":"","doi":"10.1016/j.jacr.2024.02.035","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The aim of this study was to develop and validate a predictive model for clinically significant prostate cancer (csPCa) using prostate MRI and patient risk factors.</p></div><div><h3>Methods</h3><p>In total, 960 men who underwent MRI from 2015 to 2019 and biopsy either 6 months before or 6 months after MRI were identified. Men diagnosed with csPCa were identified, and csPCa risk was modeled using known patient factors (age, race, and prostate-specific antigen [PSA] level) and prostate MRI findings (location, Prostate Imaging Reporting and Data System score, extraprostatic extension, dominant lesion size, and PSA density). csPCa was defined as Gleason score<span> sum ≥ 7. Using a derivation cohort, a multivariable logistic regression model and a point-based scoring system were developed to predict csPCa. Discrimination and calibration were assessed in a separate independent validation cohort.</span></p></div><div><h3>Results</h3><p>Among 960 MRI reports, 552 (57.5%) were from men diagnosed with csPCa. Using the derivation cohort (n = 632), variables that predicted csPCa were Prostate Imaging Reporting and Data System scores of 4 and 5, the presence of extraprostatic extension, and elevated PSA density. Evaluation using the validation cohort (n = 328) resulted in an area under the curve of 0.77, with adequate calibration (Hosmer-Lemeshow <em>P</em> = .58). At a risk threshold of >2 points, the model identified csPCa with sensitivity of 98.4% and negative predictive value of 78.6% but prevented only 4.3% potential biopsies (0-2 points; 14 of 328). At a higher threshold of >5 points, the model identified csPCa with sensitivity of 89.5% and negative predictive value of 70.1% and avoided 20.4% of biopsies (0-5 points; 67 of 328).</p></div><div><h3>Conclusions</h3><p>The point-based model reported here can potentially identify a vast majority of men at risk for csPCa, while avoiding biopsy in about 1 in 5 men with elevated PSA levels.</p></div>","PeriodicalId":49044,"journal":{"name":"Journal of the American College of Radiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model for Predicting Clinically Significant Prostate Cancer Using Prostate MRI and Risk Factors\",\"authors\":\"\",\"doi\":\"10.1016/j.jacr.2024.02.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>The aim of this study was to develop and validate a predictive model for clinically significant prostate cancer (csPCa) using prostate MRI and patient risk factors.</p></div><div><h3>Methods</h3><p>In total, 960 men who underwent MRI from 2015 to 2019 and biopsy either 6 months before or 6 months after MRI were identified. Men diagnosed with csPCa were identified, and csPCa risk was modeled using known patient factors (age, race, and prostate-specific antigen [PSA] level) and prostate MRI findings (location, Prostate Imaging Reporting and Data System score, extraprostatic extension, dominant lesion size, and PSA density). csPCa was defined as Gleason score<span> sum ≥ 7. Using a derivation cohort, a multivariable logistic regression model and a point-based scoring system were developed to predict csPCa. Discrimination and calibration were assessed in a separate independent validation cohort.</span></p></div><div><h3>Results</h3><p>Among 960 MRI reports, 552 (57.5%) were from men diagnosed with csPCa. Using the derivation cohort (n = 632), variables that predicted csPCa were Prostate Imaging Reporting and Data System scores of 4 and 5, the presence of extraprostatic extension, and elevated PSA density. Evaluation using the validation cohort (n = 328) resulted in an area under the curve of 0.77, with adequate calibration (Hosmer-Lemeshow <em>P</em> = .58). At a risk threshold of >2 points, the model identified csPCa with sensitivity of 98.4% and negative predictive value of 78.6% but prevented only 4.3% potential biopsies (0-2 points; 14 of 328). At a higher threshold of >5 points, the model identified csPCa with sensitivity of 89.5% and negative predictive value of 70.1% and avoided 20.4% of biopsies (0-5 points; 67 of 328).</p></div><div><h3>Conclusions</h3><p>The point-based model reported here can potentially identify a vast majority of men at risk for csPCa, while avoiding biopsy in about 1 in 5 men with elevated PSA levels.</p></div>\",\"PeriodicalId\":49044,\"journal\":{\"name\":\"Journal of the American College of Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American College of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S154614402400423X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American College of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154614402400423X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A Model for Predicting Clinically Significant Prostate Cancer Using Prostate MRI and Risk Factors
Purpose
The aim of this study was to develop and validate a predictive model for clinically significant prostate cancer (csPCa) using prostate MRI and patient risk factors.
Methods
In total, 960 men who underwent MRI from 2015 to 2019 and biopsy either 6 months before or 6 months after MRI were identified. Men diagnosed with csPCa were identified, and csPCa risk was modeled using known patient factors (age, race, and prostate-specific antigen [PSA] level) and prostate MRI findings (location, Prostate Imaging Reporting and Data System score, extraprostatic extension, dominant lesion size, and PSA density). csPCa was defined as Gleason score sum ≥ 7. Using a derivation cohort, a multivariable logistic regression model and a point-based scoring system were developed to predict csPCa. Discrimination and calibration were assessed in a separate independent validation cohort.
Results
Among 960 MRI reports, 552 (57.5%) were from men diagnosed with csPCa. Using the derivation cohort (n = 632), variables that predicted csPCa were Prostate Imaging Reporting and Data System scores of 4 and 5, the presence of extraprostatic extension, and elevated PSA density. Evaluation using the validation cohort (n = 328) resulted in an area under the curve of 0.77, with adequate calibration (Hosmer-Lemeshow P = .58). At a risk threshold of >2 points, the model identified csPCa with sensitivity of 98.4% and negative predictive value of 78.6% but prevented only 4.3% potential biopsies (0-2 points; 14 of 328). At a higher threshold of >5 points, the model identified csPCa with sensitivity of 89.5% and negative predictive value of 70.1% and avoided 20.4% of biopsies (0-5 points; 67 of 328).
Conclusions
The point-based model reported here can potentially identify a vast majority of men at risk for csPCa, while avoiding biopsy in about 1 in 5 men with elevated PSA levels.
期刊介绍:
The official journal of the American College of Radiology, JACR informs its readers of timely, pertinent, and important topics affecting the practice of diagnostic radiologists, interventional radiologists, medical physicists, and radiation oncologists. In so doing, JACR improves their practices and helps optimize their role in the health care system. By providing a forum for informative, well-written articles on health policy, clinical practice, practice management, data science, and education, JACR engages readers in a dialogue that ultimately benefits patient care.