由 V2I 支持的 CAV 强制变道合作控制

IF 12.5 Q1 TRANSPORTATION Communications in Transportation Research Pub Date : 2024-05-08 DOI:10.1016/j.commtr.2024.100126
Ran Yi , Yifan Yao , Fan Pu , Yang Zhou , Xin Wang
{"title":"由 V2I 支持的 CAV 强制变道合作控制","authors":"Ran Yi ,&nbsp;Yifan Yao ,&nbsp;Fan Pu ,&nbsp;Yang Zhou ,&nbsp;Xin Wang","doi":"10.1016/j.commtr.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a spatially formulated cooperative dynamic mandatory connected automated vehicle (CAV) lane-changing and car-following approach on curved highways with the assistance of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. This work proposes mandatory lane-changing control in a spatial domain to accomplish car-following and lane-changing efficiency in a systematic manner. This control technique initially creates a virtual CAV car-following lane by assigning CAVs sequential numbers based on their spatial position. On this basis, a multi-objective model predictive control (MPC) strategy in the spatial domain is designed to optimize the trajectories in a rolling horizon fashion in order to maintain the inter-vehicle spacing and speed difference while simultaneously satisfying collision avoidances, traffic regulations, and vehicle kinematics constraints. Multi-scenario numerical simulations are conducted to validate the control efficacy of our technique.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"4 ","pages":"Article 100126"},"PeriodicalIF":12.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242472400009X/pdfft?md5=05853561b7b736da6439f4266819c14b&pid=1-s2.0-S277242472400009X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cooperative CAV mandatory lane-change control enabled by V2I\",\"authors\":\"Ran Yi ,&nbsp;Yifan Yao ,&nbsp;Fan Pu ,&nbsp;Yang Zhou ,&nbsp;Xin Wang\",\"doi\":\"10.1016/j.commtr.2024.100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a spatially formulated cooperative dynamic mandatory connected automated vehicle (CAV) lane-changing and car-following approach on curved highways with the assistance of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. This work proposes mandatory lane-changing control in a spatial domain to accomplish car-following and lane-changing efficiency in a systematic manner. This control technique initially creates a virtual CAV car-following lane by assigning CAVs sequential numbers based on their spatial position. On this basis, a multi-objective model predictive control (MPC) strategy in the spatial domain is designed to optimize the trajectories in a rolling horizon fashion in order to maintain the inter-vehicle spacing and speed difference while simultaneously satisfying collision avoidances, traffic regulations, and vehicle kinematics constraints. Multi-scenario numerical simulations are conducted to validate the control efficacy of our technique.</p></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":\"4 \",\"pages\":\"Article 100126\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277242472400009X/pdfft?md5=05853561b7b736da6439f4266819c14b&pid=1-s2.0-S277242472400009X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277242472400009X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242472400009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在车辆对基础设施(V2I)和车辆对车辆(V2V)通信的辅助下,在弯曲的高速公路上进行空间配制的合作式动态强制联网自动驾驶车辆(CAV)变道和跟车方法。这项工作提出了空间域中的强制变道控制,以系统的方式实现汽车跟随和变道效率。该控制技术首先根据 CAV 的空间位置为其分配序列号,从而创建虚拟 CAV 跟车车道。在此基础上,设计了一种空间域多目标模型预测控制(MPC)策略,以滚动视平线方式优化轨迹,从而保持车辆间距和速度差,同时满足避免碰撞、交通法规和车辆运动学约束条件。我们进行了多场景数值模拟,以验证我们技术的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative CAV mandatory lane-change control enabled by V2I

This paper presents a spatially formulated cooperative dynamic mandatory connected automated vehicle (CAV) lane-changing and car-following approach on curved highways with the assistance of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. This work proposes mandatory lane-changing control in a spatial domain to accomplish car-following and lane-changing efficiency in a systematic manner. This control technique initially creates a virtual CAV car-following lane by assigning CAVs sequential numbers based on their spatial position. On this basis, a multi-objective model predictive control (MPC) strategy in the spatial domain is designed to optimize the trajectories in a rolling horizon fashion in order to maintain the inter-vehicle spacing and speed difference while simultaneously satisfying collision avoidances, traffic regulations, and vehicle kinematics constraints. Multi-scenario numerical simulations are conducted to validate the control efficacy of our technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
期刊最新文献
A systematic review of machine learning-based microscopic traffic flow models and simulations On the stochastic fundamental diagram: A general micro-macroscopic traffic flow modeling framework Drone to recharge electric vehicles: Operations, benefits, and challenges Integrating spatial-temporal risk maps with candidate trajectory trees for explainable autonomous driving planning Evaluation of accessibility disparities in urban areas during disruptive events based on transit real data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1