{"title":"β管膜蛋白通过杂交管中间态折叠","authors":"Alfred Hartojo , Matthew Thomas Doyle","doi":"10.1016/j.sbi.2024.102830","DOIUrl":null,"url":null,"abstract":"<div><p>Gram-negative bacteria and eukaryotic organelles of bacterial origin contain outer membrane proteins that possess a transmembrane “β-barrel” domain. The conserved β-barrel assembly machine (BAM) and the sorting and assembly machine (SAM) are required for the folding and membrane insertion of β-barrels in Gram-negative bacteria and mitochondria, respectively. Although the mechanisms by which β-barrels are folded are incompletely understood, advances in cryo-electron microscopy (cryo-EM) have recently yielded unprecedented insights into their folding process. Here we highlight recent studies that show that both bacterial and mitochondrial β-barrels fold via the formation of remarkable “hybrid-barrel” intermediate states during their interaction with the folding machinery. We discuss how these results align with a general model of β-barrel folding.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102830"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000575/pdfft?md5=d4f14cdbebc9e39ccba53582e5d78587&pid=1-s2.0-S0959440X24000575-main.pdf","citationCount":"0","resultStr":"{\"title\":\"β-barrel membrane proteins fold via hybrid-barrel intermediate states\",\"authors\":\"Alfred Hartojo , Matthew Thomas Doyle\",\"doi\":\"10.1016/j.sbi.2024.102830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gram-negative bacteria and eukaryotic organelles of bacterial origin contain outer membrane proteins that possess a transmembrane “β-barrel” domain. The conserved β-barrel assembly machine (BAM) and the sorting and assembly machine (SAM) are required for the folding and membrane insertion of β-barrels in Gram-negative bacteria and mitochondria, respectively. Although the mechanisms by which β-barrels are folded are incompletely understood, advances in cryo-electron microscopy (cryo-EM) have recently yielded unprecedented insights into their folding process. Here we highlight recent studies that show that both bacterial and mitochondrial β-barrels fold via the formation of remarkable “hybrid-barrel” intermediate states during their interaction with the folding machinery. We discuss how these results align with a general model of β-barrel folding.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"87 \",\"pages\":\"Article 102830\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000575/pdfft?md5=d4f14cdbebc9e39ccba53582e5d78587&pid=1-s2.0-S0959440X24000575-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000575\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000575","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
β-barrel membrane proteins fold via hybrid-barrel intermediate states
Gram-negative bacteria and eukaryotic organelles of bacterial origin contain outer membrane proteins that possess a transmembrane “β-barrel” domain. The conserved β-barrel assembly machine (BAM) and the sorting and assembly machine (SAM) are required for the folding and membrane insertion of β-barrels in Gram-negative bacteria and mitochondria, respectively. Although the mechanisms by which β-barrels are folded are incompletely understood, advances in cryo-electron microscopy (cryo-EM) have recently yielded unprecedented insights into their folding process. Here we highlight recent studies that show that both bacterial and mitochondrial β-barrels fold via the formation of remarkable “hybrid-barrel” intermediate states during their interaction with the folding machinery. We discuss how these results align with a general model of β-barrel folding.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation