Xiling Cui , Zhongshan Zhu , Libo Liu , Qiang Zhou , Qiang Liu
{"title":"消费者评论分析中的异常检测,促进产品创新创意的产生:比较机器学习和深度学习技术","authors":"Xiling Cui , Zhongshan Zhu , Libo Liu , Qiang Zhou , Qiang Liu","doi":"10.1016/j.technovation.2024.103028","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of big data analytics, consumers' online reviews are becoming increasingly useful for product innovation with hidden innovative ideas that can be extracted. However, these ideas may be only hidden in a small part of the massive reviews. This study aims to investigate the potential of using anomaly detection technology to identify unique reviews for more effective innovation generation. Three classical anomaly detection approaches (including both machine and deep learning) were explored, namely, isolation forest, density-based cluster analysis, and autoencoder methods. Using the consumer reviews on Dyson Vacuum cleaner from Xiaohongshu (one of the most popular social media platforms in China), we tested and compared the application of these three approaches in detecting innovation-relevant reviews. The results indicate that the two machine learning approaches, aka., density-based cluster analysis and isolation forest are too sensitive to the length of the reviews. The deep learning method, autoencoder, on the contrary, shows good stability and capability to detect the unique reviews from the whole dataset. Furthermore, the experts’ rating also confirms the effectiveness of autoencoder in identifying innovation-relevant reviews. Future studies and implications are then discussed.</p></div>","PeriodicalId":49444,"journal":{"name":"Technovation","volume":"134 ","pages":"Article 103028"},"PeriodicalIF":11.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly detection in consumer review analytics for idea generation in product innovation: Comparing machine learning and deep learning techniques\",\"authors\":\"Xiling Cui , Zhongshan Zhu , Libo Liu , Qiang Zhou , Qiang Liu\",\"doi\":\"10.1016/j.technovation.2024.103028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the development of big data analytics, consumers' online reviews are becoming increasingly useful for product innovation with hidden innovative ideas that can be extracted. However, these ideas may be only hidden in a small part of the massive reviews. This study aims to investigate the potential of using anomaly detection technology to identify unique reviews for more effective innovation generation. Three classical anomaly detection approaches (including both machine and deep learning) were explored, namely, isolation forest, density-based cluster analysis, and autoencoder methods. Using the consumer reviews on Dyson Vacuum cleaner from Xiaohongshu (one of the most popular social media platforms in China), we tested and compared the application of these three approaches in detecting innovation-relevant reviews. The results indicate that the two machine learning approaches, aka., density-based cluster analysis and isolation forest are too sensitive to the length of the reviews. The deep learning method, autoencoder, on the contrary, shows good stability and capability to detect the unique reviews from the whole dataset. Furthermore, the experts’ rating also confirms the effectiveness of autoencoder in identifying innovation-relevant reviews. Future studies and implications are then discussed.</p></div>\",\"PeriodicalId\":49444,\"journal\":{\"name\":\"Technovation\",\"volume\":\"134 \",\"pages\":\"Article 103028\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technovation\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166497224000786\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technovation","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166497224000786","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Anomaly detection in consumer review analytics for idea generation in product innovation: Comparing machine learning and deep learning techniques
With the development of big data analytics, consumers' online reviews are becoming increasingly useful for product innovation with hidden innovative ideas that can be extracted. However, these ideas may be only hidden in a small part of the massive reviews. This study aims to investigate the potential of using anomaly detection technology to identify unique reviews for more effective innovation generation. Three classical anomaly detection approaches (including both machine and deep learning) were explored, namely, isolation forest, density-based cluster analysis, and autoencoder methods. Using the consumer reviews on Dyson Vacuum cleaner from Xiaohongshu (one of the most popular social media platforms in China), we tested and compared the application of these three approaches in detecting innovation-relevant reviews. The results indicate that the two machine learning approaches, aka., density-based cluster analysis and isolation forest are too sensitive to the length of the reviews. The deep learning method, autoencoder, on the contrary, shows good stability and capability to detect the unique reviews from the whole dataset. Furthermore, the experts’ rating also confirms the effectiveness of autoencoder in identifying innovation-relevant reviews. Future studies and implications are then discussed.
期刊介绍:
The interdisciplinary journal Technovation covers various aspects of technological innovation, exploring processes, products, and social impacts. It examines innovation in both process and product realms, including social innovations like regulatory frameworks and non-economic benefits. Topics range from emerging trends and capital for development to managing technology-intensive ventures and innovation in organizations of different sizes. It also discusses organizational structures, investment strategies for science and technology enterprises, and the roles of technological innovators. Additionally, it addresses technology transfer between developing countries and innovation across enterprise, political, and economic systems.