Siyi Kang , Jintao Ou , Xing Wang , Jingwei Chen , Jiaqiang E
{"title":"通过超临界水氧化和酸浸法回收三元锂离子废电池正极材料的效果分析","authors":"Siyi Kang , Jintao Ou , Xing Wang , Jingwei Chen , Jiaqiang E","doi":"10.1016/j.supflu.2024.106297","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposed a recycling method for spent batteries by combining supercritical water oxidation and acid-leaching. In supercritical water oxidation process, the cathode material was separated from the electrode plate, and 98% of lithium in the cathode was leached to achieve the separation of lithium from Ni, Co and Mn. Ni, Co and Mn were then leached during the acid leaching process. The effect of solid-liquid ratio, oxidant mass concentration, reaction time and temperature in supercritical process on metal leaching was analyzed. The leaching rate of Ni, Co and Mn was improved by increasing the mass concentration of oxidant and the reaction temperature. The effect of reaction time on metal leaching is related to the mass concentration of oxidant in the solution. Through the control of paraments, the leaching efficiencies of Ni, Co and Mn were significantly improved from 90.4%, 84.7%, 86.4–99.7%, 96.8% and 98.5%.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"211 ","pages":"Article 106297"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect analysis on recycling of cathode material from spent ternary lithium-ion batteries via supercritical water oxidation and acid-leaching\",\"authors\":\"Siyi Kang , Jintao Ou , Xing Wang , Jingwei Chen , Jiaqiang E\",\"doi\":\"10.1016/j.supflu.2024.106297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposed a recycling method for spent batteries by combining supercritical water oxidation and acid-leaching. In supercritical water oxidation process, the cathode material was separated from the electrode plate, and 98% of lithium in the cathode was leached to achieve the separation of lithium from Ni, Co and Mn. Ni, Co and Mn were then leached during the acid leaching process. The effect of solid-liquid ratio, oxidant mass concentration, reaction time and temperature in supercritical process on metal leaching was analyzed. The leaching rate of Ni, Co and Mn was improved by increasing the mass concentration of oxidant and the reaction temperature. The effect of reaction time on metal leaching is related to the mass concentration of oxidant in the solution. Through the control of paraments, the leaching efficiencies of Ni, Co and Mn were significantly improved from 90.4%, 84.7%, 86.4–99.7%, 96.8% and 98.5%.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"211 \",\"pages\":\"Article 106297\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624001323\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624001323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect analysis on recycling of cathode material from spent ternary lithium-ion batteries via supercritical water oxidation and acid-leaching
This study proposed a recycling method for spent batteries by combining supercritical water oxidation and acid-leaching. In supercritical water oxidation process, the cathode material was separated from the electrode plate, and 98% of lithium in the cathode was leached to achieve the separation of lithium from Ni, Co and Mn. Ni, Co and Mn were then leached during the acid leaching process. The effect of solid-liquid ratio, oxidant mass concentration, reaction time and temperature in supercritical process on metal leaching was analyzed. The leaching rate of Ni, Co and Mn was improved by increasing the mass concentration of oxidant and the reaction temperature. The effect of reaction time on metal leaching is related to the mass concentration of oxidant in the solution. Through the control of paraments, the leaching efficiencies of Ni, Co and Mn were significantly improved from 90.4%, 84.7%, 86.4–99.7%, 96.8% and 98.5%.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.