通过设计Cadherin细胞内活性来编程空间细胞分类

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-05-10 DOI:10.1021/acssynbio.3c00774
Hikari Baba, Tomohiro Fujita, Kosuke Mizuno, Mai Tambo and Satoshi Toda*, 
{"title":"通过设计Cadherin细胞内活性来编程空间细胞分类","authors":"Hikari Baba,&nbsp;Tomohiro Fujita,&nbsp;Kosuke Mizuno,&nbsp;Mai Tambo and Satoshi Toda*,&nbsp;","doi":"10.1021/acssynbio.3c00774","DOIUrl":null,"url":null,"abstract":"<p >The spatial sorting of cells into appropriate tissue compartments is essential for embryogenesis and tissue development. Spatial cell sorting is controlled by the interplay between cell surface affinity and intracellular mechanical properties. However, intracellular signaling that can sufficiently sort cell populations remains unexplored. In this study, we engineered chimeric cadherins by replacing the cadherin intracellular domain with cytoskeletal regulators to test their ability to induce spatial cell sorting. Using a fibroblast-based reconstitution system, we observed that Rac1 and RhoA activity in the cadherin tail induced outward and inward sorting, respectively. In particular, RhoA activity embedded cells toward the inside of E-cadherin-expressing spheroids and tumor spheroids, leading to tissue invagination. Despite the simplicity of chimeric cadherin design, our results indicate that differences in cadherin intracellular activities can determine the direction of spatial cell sorting, even when cell surface affinity is not different, and provide new molecular tools to engineer tissue architectures.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.3c00774","citationCount":"0","resultStr":"{\"title\":\"Programming Spatial Cell Sorting by Engineering Cadherin Intracellular Activity\",\"authors\":\"Hikari Baba,&nbsp;Tomohiro Fujita,&nbsp;Kosuke Mizuno,&nbsp;Mai Tambo and Satoshi Toda*,&nbsp;\",\"doi\":\"10.1021/acssynbio.3c00774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The spatial sorting of cells into appropriate tissue compartments is essential for embryogenesis and tissue development. Spatial cell sorting is controlled by the interplay between cell surface affinity and intracellular mechanical properties. However, intracellular signaling that can sufficiently sort cell populations remains unexplored. In this study, we engineered chimeric cadherins by replacing the cadherin intracellular domain with cytoskeletal regulators to test their ability to induce spatial cell sorting. Using a fibroblast-based reconstitution system, we observed that Rac1 and RhoA activity in the cadherin tail induced outward and inward sorting, respectively. In particular, RhoA activity embedded cells toward the inside of E-cadherin-expressing spheroids and tumor spheroids, leading to tissue invagination. Despite the simplicity of chimeric cadherin design, our results indicate that differences in cadherin intracellular activities can determine the direction of spatial cell sorting, even when cell surface affinity is not different, and provide new molecular tools to engineer tissue architectures.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.3c00774\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.3c00774\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.3c00774","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

将细胞空间分选到适当的组织区对胚胎发生和组织发育至关重要。细胞空间分选受细胞表面亲和力和细胞内机械特性之间相互作用的控制。然而,能够充分分选细胞群的细胞内信号传导仍未得到探索。在这项研究中,我们用细胞骨架调节因子取代了粘附素的胞内结构域,从而设计出了嵌合的粘附素,以测试它们诱导空间细胞分拣的能力。利用基于成纤维细胞的重组系统,我们观察到粘连蛋白尾部的 Rac1 和 RhoA 活性分别诱导向外和向内分选。特别是,RhoA活性将细胞嵌入表达E-cadherin的球体和肿瘤球体内部,导致组织内陷。尽管嵌合粘连蛋白的设计很简单,但我们的研究结果表明,即使细胞表面亲和力没有差异,粘连蛋白胞内活性的不同也能决定细胞空间分选的方向,这为设计组织结构提供了新的分子工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Programming Spatial Cell Sorting by Engineering Cadherin Intracellular Activity

The spatial sorting of cells into appropriate tissue compartments is essential for embryogenesis and tissue development. Spatial cell sorting is controlled by the interplay between cell surface affinity and intracellular mechanical properties. However, intracellular signaling that can sufficiently sort cell populations remains unexplored. In this study, we engineered chimeric cadherins by replacing the cadherin intracellular domain with cytoskeletal regulators to test their ability to induce spatial cell sorting. Using a fibroblast-based reconstitution system, we observed that Rac1 and RhoA activity in the cadherin tail induced outward and inward sorting, respectively. In particular, RhoA activity embedded cells toward the inside of E-cadherin-expressing spheroids and tumor spheroids, leading to tissue invagination. Despite the simplicity of chimeric cadherin design, our results indicate that differences in cadherin intracellular activities can determine the direction of spatial cell sorting, even when cell surface affinity is not different, and provide new molecular tools to engineer tissue architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Bioinformatic Prediction and High Throughput In Vivo Screening to Identify Cis-Regulatory Elements for the Development of Algal Synthetic Promoters. Cell-Free Translation Quantification via a Fluorescent Minihelix. Directed Evolution of Acoustic Reporter Genes Using High-Throughput Acoustic Screening. Metabolic Profile of the Genome-Reduced Bacillus subtilis Strain IIG-Bs-27-39: An Attractive Chassis for Recombinant Protein Production. AutoBioTech─A Versatile Biofoundry for Automated Strain Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1