Mingyu Zhang, Wei Perng, Sheryl L Rifas-Shiman, Izzuddin M Aris, Emily Oken, Marie-France Hivert
{"title":"从青春期早期到晚期的血压代谢特征:美国队列的研究结果。","authors":"Mingyu Zhang, Wei Perng, Sheryl L Rifas-Shiman, Izzuddin M Aris, Emily Oken, Marie-France Hivert","doi":"10.1007/s11306-024-02110-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Metabolite signatures for blood pressure (BP) may reveal biomarkers, elucidate pathogenesis, and provide prevention targets for high BP. Knowledge regarding metabolites associated with BP in adolescence remains limited.</p><p><strong>Objectives: </strong>Investigate the associations between metabolites and adolescent BP, both cross-sectionally (in early and late adolescence) and prospectively (from early to late adolescence).</p><p><strong>Methods: </strong>Participants are from the Project Viva prospective cohort. During the early (median: 12.8 years; N = 556) and late (median: 17.4 years; N = 501) adolescence visits, we conducted untargeted plasma metabolomic profiling and measured systolic (SBP) and diastolic BP (DBP). We used linear regression to identify metabolites cross-sectionally associated with BP at each time point, and to assess prospective associations of changes in metabolite levels from early to late adolescence with late adolescence BP. We used Weighted Gene Correlation Network Analysis and Spearman's partial correlation to identify metabolite clusters associated with BP at each time point.</p><p><strong>Results: </strong>In the linear models, higher androgenic steroid levels were consistently associated with higher SBP and DBP in early and late adolescence. A cluster of 59 metabolites, mainly composed of androgenic steroids, correlated with higher SBP and DBP in early adolescence. A cluster primarily composed of fatty acid lipids was marginally associated with higher SBP in females in late adolescence. Multiple metabolites, including those in the creatine and purine metabolism sub-pathways, were associated with higher SBP and DBP both cross-sectionally and prospectively.</p><p><strong>Conclusion: </strong>Our results shed light on the potential metabolic processes and pathophysiology underlying high BP in adolescents.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195684/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolomic signatures for blood pressure from early to late adolescence: findings from a U.S. cohort.\",\"authors\":\"Mingyu Zhang, Wei Perng, Sheryl L Rifas-Shiman, Izzuddin M Aris, Emily Oken, Marie-France Hivert\",\"doi\":\"10.1007/s11306-024-02110-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Metabolite signatures for blood pressure (BP) may reveal biomarkers, elucidate pathogenesis, and provide prevention targets for high BP. Knowledge regarding metabolites associated with BP in adolescence remains limited.</p><p><strong>Objectives: </strong>Investigate the associations between metabolites and adolescent BP, both cross-sectionally (in early and late adolescence) and prospectively (from early to late adolescence).</p><p><strong>Methods: </strong>Participants are from the Project Viva prospective cohort. During the early (median: 12.8 years; N = 556) and late (median: 17.4 years; N = 501) adolescence visits, we conducted untargeted plasma metabolomic profiling and measured systolic (SBP) and diastolic BP (DBP). We used linear regression to identify metabolites cross-sectionally associated with BP at each time point, and to assess prospective associations of changes in metabolite levels from early to late adolescence with late adolescence BP. We used Weighted Gene Correlation Network Analysis and Spearman's partial correlation to identify metabolite clusters associated with BP at each time point.</p><p><strong>Results: </strong>In the linear models, higher androgenic steroid levels were consistently associated with higher SBP and DBP in early and late adolescence. A cluster of 59 metabolites, mainly composed of androgenic steroids, correlated with higher SBP and DBP in early adolescence. A cluster primarily composed of fatty acid lipids was marginally associated with higher SBP in females in late adolescence. Multiple metabolites, including those in the creatine and purine metabolism sub-pathways, were associated with higher SBP and DBP both cross-sectionally and prospectively.</p><p><strong>Conclusion: </strong>Our results shed light on the potential metabolic processes and pathophysiology underlying high BP in adolescents.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195684/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-024-02110-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02110-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Metabolomic signatures for blood pressure from early to late adolescence: findings from a U.S. cohort.
Introduction: Metabolite signatures for blood pressure (BP) may reveal biomarkers, elucidate pathogenesis, and provide prevention targets for high BP. Knowledge regarding metabolites associated with BP in adolescence remains limited.
Objectives: Investigate the associations between metabolites and adolescent BP, both cross-sectionally (in early and late adolescence) and prospectively (from early to late adolescence).
Methods: Participants are from the Project Viva prospective cohort. During the early (median: 12.8 years; N = 556) and late (median: 17.4 years; N = 501) adolescence visits, we conducted untargeted plasma metabolomic profiling and measured systolic (SBP) and diastolic BP (DBP). We used linear regression to identify metabolites cross-sectionally associated with BP at each time point, and to assess prospective associations of changes in metabolite levels from early to late adolescence with late adolescence BP. We used Weighted Gene Correlation Network Analysis and Spearman's partial correlation to identify metabolite clusters associated with BP at each time point.
Results: In the linear models, higher androgenic steroid levels were consistently associated with higher SBP and DBP in early and late adolescence. A cluster of 59 metabolites, mainly composed of androgenic steroids, correlated with higher SBP and DBP in early adolescence. A cluster primarily composed of fatty acid lipids was marginally associated with higher SBP in females in late adolescence. Multiple metabolites, including those in the creatine and purine metabolism sub-pathways, were associated with higher SBP and DBP both cross-sectionally and prospectively.
Conclusion: Our results shed light on the potential metabolic processes and pathophysiology underlying high BP in adolescents.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.