Katharina M Jaeger, Michael Nissen, Simone Rahm, Adriana Titzmann, Peter A Fasching, Janina Beilner, Bjoern M Eskofier, Heike Leutheuser
{"title":"Power-MF:从无创胎儿心电图记录中稳健检测胎儿 QRS。","authors":"Katharina M Jaeger, Michael Nissen, Simone Rahm, Adriana Titzmann, Peter A Fasching, Janina Beilner, Bjoern M Eskofier, Heike Leutheuser","doi":"10.1088/1361-6579/ad4952","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal heart rate monitoring for effective detection and management. The current gold standard, cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing technology for fetal cardiac activity, offering potential advancements in the detection and management of perinatal asphyxia. Although algorithms for fetal QRS detection have been developed in the past, only a few of them demonstrate accurate performance in the presence of noise and artifacts.<i>Approach.</i>In this work, we propose<i>Power-MF</i>, a new algorithm for fetal QRS detection combining power spectral density and matched filter techniques. We benchmark<i>Power-MF</i>against three open-source algorithms on two recently published datasets (Abdominal and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).<i>Main results.</i>Our results show that<i>Power-MF</i>outperforms state-of-the-art algorithms on ADFECG (B1 Pregnancy: 99.5% ± 0.5% F1-score, B2 Labour: 98.0% ± 3.0% F1-score) and on NInFEA in three of six electrode configurations by being more robust against noise.<i>Significance.</i>Through this work, we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and making prenatal care more accessible.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-MF: robust fetal QRS detection from non-invasive fetal electrocardiogram recordings.\",\"authors\":\"Katharina M Jaeger, Michael Nissen, Simone Rahm, Adriana Titzmann, Peter A Fasching, Janina Beilner, Bjoern M Eskofier, Heike Leutheuser\",\"doi\":\"10.1088/1361-6579/ad4952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal heart rate monitoring for effective detection and management. The current gold standard, cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing technology for fetal cardiac activity, offering potential advancements in the detection and management of perinatal asphyxia. Although algorithms for fetal QRS detection have been developed in the past, only a few of them demonstrate accurate performance in the presence of noise and artifacts.<i>Approach.</i>In this work, we propose<i>Power-MF</i>, a new algorithm for fetal QRS detection combining power spectral density and matched filter techniques. We benchmark<i>Power-MF</i>against three open-source algorithms on two recently published datasets (Abdominal and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).<i>Main results.</i>Our results show that<i>Power-MF</i>outperforms state-of-the-art algorithms on ADFECG (B1 Pregnancy: 99.5% ± 0.5% F1-score, B2 Labour: 98.0% ± 3.0% F1-score) and on NInFEA in three of six electrode configurations by being more robust against noise.<i>Significance.</i>Through this work, we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and making prenatal care more accessible.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad4952\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad4952","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Power-MF: robust fetal QRS detection from non-invasive fetal electrocardiogram recordings.
Objective.Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal heart rate monitoring for effective detection and management. The current gold standard, cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing technology for fetal cardiac activity, offering potential advancements in the detection and management of perinatal asphyxia. Although algorithms for fetal QRS detection have been developed in the past, only a few of them demonstrate accurate performance in the presence of noise and artifacts.Approach.In this work, we proposePower-MF, a new algorithm for fetal QRS detection combining power spectral density and matched filter techniques. We benchmarkPower-MFagainst three open-source algorithms on two recently published datasets (Abdominal and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).Main results.Our results show thatPower-MFoutperforms state-of-the-art algorithms on ADFECG (B1 Pregnancy: 99.5% ± 0.5% F1-score, B2 Labour: 98.0% ± 3.0% F1-score) and on NInFEA in three of six electrode configurations by being more robust against noise.Significance.Through this work, we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and making prenatal care more accessible.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.