S.J. Enoch , Z. Hasarova , M.T.D. Cronin , K. Bridgwood , S. Rao , F.M. Kluxen , M. Frericks
{"title":"基于代谢的类别划分,确定植物保护产品残留物遗传毒性危害评估的优先次序(第 4 部分):α-氯乙酰胺。","authors":"S.J. Enoch , Z. Hasarova , M.T.D. Cronin , K. Bridgwood , S. Rao , F.M. Kluxen , M. Frericks","doi":"10.1016/j.yrtph.2024.105641","DOIUrl":null,"url":null,"abstract":"<div><p>In dietary risk assessment of plant protection products, residues of active ingredients and their metabolites need to be evaluated for their genotoxic potential. The European Food Safety Authority recommend a tiered approach focussing assessment and testing on classes of similar chemicals. To characterise similarity, in terms of metabolism, a metabolic similarity profiling scheme has been developed from an analysis of 69 α-chloroacetamide herbicides for which either Ames, chromosomal aberration or micronucleus test results are publicly available. A set of structural space alerts were defined, each linked to a key metabolic transformation present in the α-chloroacetamide metabolic space. The structural space alerts were combined with covalent chemistry profiling to develop categories suitable for chemical prioritisation via read-across. The method is a robust and reproducible approach to such read-across predictions, with the potential to reduce unnecessary testing. The key challenge in the approach was identified as being the need for metabolism data individual groups of plant protection products as the basis for the development of the structural space alerts.</p></div>","PeriodicalId":20852,"journal":{"name":"Regulatory Toxicology and Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0273230024000825/pdfft?md5=3d91cdafb99854bfe906dd23a7d048cd&pid=1-s2.0-S0273230024000825-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolism-based category formation for the prioritisation of genotoxicity hazard assessment for plant protection product residues (Part 4): α-Chloroacetamides\",\"authors\":\"S.J. Enoch , Z. Hasarova , M.T.D. Cronin , K. Bridgwood , S. Rao , F.M. Kluxen , M. Frericks\",\"doi\":\"10.1016/j.yrtph.2024.105641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In dietary risk assessment of plant protection products, residues of active ingredients and their metabolites need to be evaluated for their genotoxic potential. The European Food Safety Authority recommend a tiered approach focussing assessment and testing on classes of similar chemicals. To characterise similarity, in terms of metabolism, a metabolic similarity profiling scheme has been developed from an analysis of 69 α-chloroacetamide herbicides for which either Ames, chromosomal aberration or micronucleus test results are publicly available. A set of structural space alerts were defined, each linked to a key metabolic transformation present in the α-chloroacetamide metabolic space. The structural space alerts were combined with covalent chemistry profiling to develop categories suitable for chemical prioritisation via read-across. The method is a robust and reproducible approach to such read-across predictions, with the potential to reduce unnecessary testing. The key challenge in the approach was identified as being the need for metabolism data individual groups of plant protection products as the basis for the development of the structural space alerts.</p></div>\",\"PeriodicalId\":20852,\"journal\":{\"name\":\"Regulatory Toxicology and Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0273230024000825/pdfft?md5=3d91cdafb99854bfe906dd23a7d048cd&pid=1-s2.0-S0273230024000825-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regulatory Toxicology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273230024000825\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulatory Toxicology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273230024000825","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Metabolism-based category formation for the prioritisation of genotoxicity hazard assessment for plant protection product residues (Part 4): α-Chloroacetamides
In dietary risk assessment of plant protection products, residues of active ingredients and their metabolites need to be evaluated for their genotoxic potential. The European Food Safety Authority recommend a tiered approach focussing assessment and testing on classes of similar chemicals. To characterise similarity, in terms of metabolism, a metabolic similarity profiling scheme has been developed from an analysis of 69 α-chloroacetamide herbicides for which either Ames, chromosomal aberration or micronucleus test results are publicly available. A set of structural space alerts were defined, each linked to a key metabolic transformation present in the α-chloroacetamide metabolic space. The structural space alerts were combined with covalent chemistry profiling to develop categories suitable for chemical prioritisation via read-across. The method is a robust and reproducible approach to such read-across predictions, with the potential to reduce unnecessary testing. The key challenge in the approach was identified as being the need for metabolism data individual groups of plant protection products as the basis for the development of the structural space alerts.
期刊介绍:
Regulatory Toxicology and Pharmacology publishes peer reviewed articles that involve the generation, evaluation, and interpretation of experimental animal and human data that are of direct importance and relevance for regulatory authorities with respect to toxicological and pharmacological regulations in society. All peer-reviewed articles that are published should be devoted to improve the protection of human health and environment. Reviews and discussions are welcomed that address legal and/or regulatory decisions with respect to risk assessment and management of toxicological and pharmacological compounds on a scientific basis. It addresses an international readership of scientists, risk assessors and managers, and other professionals active in the field of human and environmental health.
Types of peer-reviewed articles published:
-Original research articles of relevance for regulatory aspects covering aspects including, but not limited to:
1.Factors influencing human sensitivity
2.Exposure science related to risk assessment
3.Alternative toxicological test methods
4.Frameworks for evaluation and integration of data in regulatory evaluations
5.Harmonization across regulatory agencies
6.Read-across methods and evaluations
-Contemporary Reviews on policy related Research issues
-Letters to the Editor
-Guest Editorials (by Invitation)