评估基于注意力的网络对对抗性攻击的鲁棒性:基于脑电图的运动图像分类案例。

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-08-01 DOI:10.1016/j.slast.2024.100142
{"title":"评估基于注意力的网络对对抗性攻击的鲁棒性:基于脑电图的运动图像分类案例。","authors":"","doi":"10.1016/j.slast.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><p>The classification of motor imagery (MI) using Electroencephalography (EEG) plays a pivotal role in facilitating communication for individuals with physical limitations through Brain-Computer Interface (BCI) systems. Recent strides in Attention-Based Networks (ATN) have showcased remarkable performance in EEG signal classification, presenting a promising alternative to conventional Convolutional Neural Networks (CNNs). However, while CNNs have been extensively analyzed for their resilience against adversarial attacks, the susceptibility of ATNs in comparable scenarios remains largely unexplored. This paper aims to fill this gap by investigating the robustness of ATNs in adversarial contexts. We propose a high-performing attention-based deep learning model specifically designed for classifying Motor Imagery (MI) brain signals extracted from EEG data. Subsequently, we conduct a thorough series of experiments to assess various attack strategies targeting ATNs employed in EEG-based BCI tasks. Our analysis utilizes the widely recognized BCI Competition 2a dataset to demonstrate the effectiveness of attention mechanisms in BCI endeavors. Despite achieving commendable classification results in terms of accuracy (87.15%) and kappa score (0.8287), our findings reveal the vulnerability of attention-based models to adversarial manipulations (accuracy: 9.07%, kappa score: -0.21), highlighting the imperative for bolstering the robustness of attention architectures for EEG classification tasks.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 4","pages":"Article 100142"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000244/pdfft?md5=4562ff680af5d6240601ccadf780b2fa&pid=1-s2.0-S2472630324000244-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing robustness to adversarial attacks in attention-based networks: Case of EEG-based motor imagery classification\",\"authors\":\"\",\"doi\":\"10.1016/j.slast.2024.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classification of motor imagery (MI) using Electroencephalography (EEG) plays a pivotal role in facilitating communication for individuals with physical limitations through Brain-Computer Interface (BCI) systems. Recent strides in Attention-Based Networks (ATN) have showcased remarkable performance in EEG signal classification, presenting a promising alternative to conventional Convolutional Neural Networks (CNNs). However, while CNNs have been extensively analyzed for their resilience against adversarial attacks, the susceptibility of ATNs in comparable scenarios remains largely unexplored. This paper aims to fill this gap by investigating the robustness of ATNs in adversarial contexts. We propose a high-performing attention-based deep learning model specifically designed for classifying Motor Imagery (MI) brain signals extracted from EEG data. Subsequently, we conduct a thorough series of experiments to assess various attack strategies targeting ATNs employed in EEG-based BCI tasks. Our analysis utilizes the widely recognized BCI Competition 2a dataset to demonstrate the effectiveness of attention mechanisms in BCI endeavors. Despite achieving commendable classification results in terms of accuracy (87.15%) and kappa score (0.8287), our findings reveal the vulnerability of attention-based models to adversarial manipulations (accuracy: 9.07%, kappa score: -0.21), highlighting the imperative for bolstering the robustness of attention architectures for EEG classification tasks.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"29 4\",\"pages\":\"Article 100142\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000244/pdfft?md5=4562ff680af5d6240601ccadf780b2fa&pid=1-s2.0-S2472630324000244-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000244\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

利用脑电图(EEG)对运动图像(MI)进行分类,在通过脑机接口(BCI)系统促进身体受限者的交流方面发挥着关键作用。最近,基于注意力的网络(ATN)在脑电信号分类方面取得了长足进步,显示出卓越的性能,有望替代传统的卷积神经网络(CNN)。然而,虽然 CNNs 已被广泛分析其抵御对抗性攻击的能力,但 ATNs 在类似情况下的易受攻击性在很大程度上仍未被探索。本文旨在通过研究 ATN 在对抗性环境中的鲁棒性来填补这一空白。我们提出了一种基于注意力的高性能深度学习模型,专门用于对从脑电图数据中提取的运动意象(MI)大脑信号进行分类。随后,我们进行了一系列全面的实验,以评估针对基于 EEG 的 BCI 任务中使用的 ATN 的各种攻击策略。我们的分析利用了广受认可的 BCI Competition 2a 数据集,以证明注意力机制在 BCI 工作中的有效性。尽管在准确率(87.15%)和卡帕得分(0.8287)方面取得了值得称赞的分类结果,但我们的研究结果揭示了基于注意力的模型在对抗性操纵面前的脆弱性(准确率:9.07%,卡帕得分:-0.21),这凸显了在脑电图分类任务中增强注意力架构鲁棒性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing robustness to adversarial attacks in attention-based networks: Case of EEG-based motor imagery classification

The classification of motor imagery (MI) using Electroencephalography (EEG) plays a pivotal role in facilitating communication for individuals with physical limitations through Brain-Computer Interface (BCI) systems. Recent strides in Attention-Based Networks (ATN) have showcased remarkable performance in EEG signal classification, presenting a promising alternative to conventional Convolutional Neural Networks (CNNs). However, while CNNs have been extensively analyzed for their resilience against adversarial attacks, the susceptibility of ATNs in comparable scenarios remains largely unexplored. This paper aims to fill this gap by investigating the robustness of ATNs in adversarial contexts. We propose a high-performing attention-based deep learning model specifically designed for classifying Motor Imagery (MI) brain signals extracted from EEG data. Subsequently, we conduct a thorough series of experiments to assess various attack strategies targeting ATNs employed in EEG-based BCI tasks. Our analysis utilizes the widely recognized BCI Competition 2a dataset to demonstrate the effectiveness of attention mechanisms in BCI endeavors. Despite achieving commendable classification results in terms of accuracy (87.15%) and kappa score (0.8287), our findings reveal the vulnerability of attention-based models to adversarial manipulations (accuracy: 9.07%, kappa score: -0.21), highlighting the imperative for bolstering the robustness of attention architectures for EEG classification tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Model-Based Interactive Visualization for Complex Systems Requirements and Design in Joint Tests. Implementing enclosed sterile integrated robotic platforms to improve cell-based screening for drug discovery. Life Sciences Discovery and Technology Highlights. Notes on AEMS methods development for high throughput experimentation in drug discovery. Prosthesis repair of oral implants based on artificial intelligenc`e finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1