Corey S. Shayman, Mirinda M. Whitaker, Erica Barhorst-Cates, Timothy E. Hullar, Jeanine K. Stefanucci, Sarah H. Creem-Regehr
{"title":"在虚拟现实导航任务中,添加空间听觉线索可改善空间更新。","authors":"Corey S. Shayman, Mirinda M. Whitaker, Erica Barhorst-Cates, Timothy E. Hullar, Jeanine K. Stefanucci, Sarah H. Creem-Regehr","doi":"10.3758/s13414-024-02890-x","DOIUrl":null,"url":null,"abstract":"<div><p>Auditory cues are integrated with vision and body-based self-motion cues for motion perception, balance, and gait, though limited research has evaluated their effectiveness for navigation. Here, we tested whether an auditory cue co-localized with a visual target could improve spatial updating in a virtual reality homing task. Participants navigated a triangular homing task with and without an easily localizable spatial audio signal co-located with the home location. The main outcome was unsigned angular error, defined as the absolute value of the difference between the participant’s turning response and the correct response towards the home location. Angular error was significantly reduced in the presence of spatial sound compared to a head-fixed identical auditory signal. Participants’ angular error was 22.79° in the presence of spatial audio and 30.09° in its absence. Those with the worst performance in the absence of spatial sound demonstrated the greatest improvement with the added sound cue. These results suggest that auditory cues may benefit navigation, particularly for those who demonstrated the highest level of spatial updating error in the absence of spatial sound.</p></div>","PeriodicalId":55433,"journal":{"name":"Attention Perception & Psychophysics","volume":"86 5","pages":"1473 - 1479"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The addition of a spatial auditory cue improves spatial updating in a virtual reality navigation task\",\"authors\":\"Corey S. Shayman, Mirinda M. Whitaker, Erica Barhorst-Cates, Timothy E. Hullar, Jeanine K. Stefanucci, Sarah H. Creem-Regehr\",\"doi\":\"10.3758/s13414-024-02890-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Auditory cues are integrated with vision and body-based self-motion cues for motion perception, balance, and gait, though limited research has evaluated their effectiveness for navigation. Here, we tested whether an auditory cue co-localized with a visual target could improve spatial updating in a virtual reality homing task. Participants navigated a triangular homing task with and without an easily localizable spatial audio signal co-located with the home location. The main outcome was unsigned angular error, defined as the absolute value of the difference between the participant’s turning response and the correct response towards the home location. Angular error was significantly reduced in the presence of spatial sound compared to a head-fixed identical auditory signal. Participants’ angular error was 22.79° in the presence of spatial audio and 30.09° in its absence. Those with the worst performance in the absence of spatial sound demonstrated the greatest improvement with the added sound cue. These results suggest that auditory cues may benefit navigation, particularly for those who demonstrated the highest level of spatial updating error in the absence of spatial sound.</p></div>\",\"PeriodicalId\":55433,\"journal\":{\"name\":\"Attention Perception & Psychophysics\",\"volume\":\"86 5\",\"pages\":\"1473 - 1479\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Attention Perception & Psychophysics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://link.springer.com/article/10.3758/s13414-024-02890-x\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Attention Perception & Psychophysics","FirstCategoryId":"102","ListUrlMain":"https://link.springer.com/article/10.3758/s13414-024-02890-x","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
The addition of a spatial auditory cue improves spatial updating in a virtual reality navigation task
Auditory cues are integrated with vision and body-based self-motion cues for motion perception, balance, and gait, though limited research has evaluated their effectiveness for navigation. Here, we tested whether an auditory cue co-localized with a visual target could improve spatial updating in a virtual reality homing task. Participants navigated a triangular homing task with and without an easily localizable spatial audio signal co-located with the home location. The main outcome was unsigned angular error, defined as the absolute value of the difference between the participant’s turning response and the correct response towards the home location. Angular error was significantly reduced in the presence of spatial sound compared to a head-fixed identical auditory signal. Participants’ angular error was 22.79° in the presence of spatial audio and 30.09° in its absence. Those with the worst performance in the absence of spatial sound demonstrated the greatest improvement with the added sound cue. These results suggest that auditory cues may benefit navigation, particularly for those who demonstrated the highest level of spatial updating error in the absence of spatial sound.
期刊介绍:
The journal Attention, Perception, & Psychophysics is an official journal of the Psychonomic Society. It spans all areas of research in sensory processes, perception, attention, and psychophysics. Most articles published are reports of experimental work; the journal also presents theoretical, integrative, and evaluative reviews. Commentary on issues of importance to researchers appears in a special section of the journal. Founded in 1966 as Perception & Psychophysics, the journal assumed its present name in 2009.