Mónica Mazorra-Alonso, Juan Manuel Peralta-Sánchez, Manuel Martín-Vivaldi, Manuel Martínez-Bueno, Rafael Núñez Gómez, Juan José Soler
{"title":"源于共生细菌的挥发性物质解释了胡蜂的外寄生性和羽化成功率。","authors":"Mónica Mazorra-Alonso, Juan Manuel Peralta-Sánchez, Manuel Martín-Vivaldi, Manuel Martínez-Bueno, Rafael Núñez Gómez, Juan José Soler","doi":"10.1186/s42523-024-00312-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Some parasites use olfactory cues to detect their hosts and, since bacterial symbionts are partially responsible for animal odours, they could influence host parasitism. By autoclaving nest materials of hoopoe (Upupa epops) nests before reproduction started, we explored the hypothetical links between host-associated bacteria, volatiles and parasitism. During the nestling stage, we (i) estimated the level of ectoparasitism by chewing lice (Suborder Mallophaga) in adult hoopoe females and by Carnus haemapterus flies in nestlings, and (ii) characterized microbial communities and volatile profiles of nest environments (nest material and nest cavity, respectively) and uropygial secretions.</p><p><strong>Results: </strong>Experimental nests had less diverse bacterial communities and more diverse volatile profiles than control nests, while occupants experienced lower intensity of parasitism in experimental than in control nests. The experiment also affected beta diversity of the microbial communities of nest material and of the volatiles of the nestling uropygial secretions. Moreover, microbial communities of uropygial secretions and of nest materials covaried with their volatile profiles, while the volatile profile of the bird secretions explained nest volatile profile. Finally, a subset of the volatiles and bacteria detected in the nest material and uropygial secretions were associated with the ectoparasitism intensity of both adult females and nestlings, and with fledging success.</p><p><strong>Conclusions: </strong>These results show that a component of animal odours is linked with the microbial communities of the host and its reproductive environment, and emphasize that the associations between bacteria, ectoparasitism and reproductive success are partially mediated by volatiles of bacterial origin. Future work should focus on mechanisms underlying the detected patterns.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Volatiles of symbiotic bacterial origin explain ectoparasitism and fledging success of hoopoes.\",\"authors\":\"Mónica Mazorra-Alonso, Juan Manuel Peralta-Sánchez, Manuel Martín-Vivaldi, Manuel Martínez-Bueno, Rafael Núñez Gómez, Juan José Soler\",\"doi\":\"10.1186/s42523-024-00312-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Some parasites use olfactory cues to detect their hosts and, since bacterial symbionts are partially responsible for animal odours, they could influence host parasitism. By autoclaving nest materials of hoopoe (Upupa epops) nests before reproduction started, we explored the hypothetical links between host-associated bacteria, volatiles and parasitism. During the nestling stage, we (i) estimated the level of ectoparasitism by chewing lice (Suborder Mallophaga) in adult hoopoe females and by Carnus haemapterus flies in nestlings, and (ii) characterized microbial communities and volatile profiles of nest environments (nest material and nest cavity, respectively) and uropygial secretions.</p><p><strong>Results: </strong>Experimental nests had less diverse bacterial communities and more diverse volatile profiles than control nests, while occupants experienced lower intensity of parasitism in experimental than in control nests. The experiment also affected beta diversity of the microbial communities of nest material and of the volatiles of the nestling uropygial secretions. Moreover, microbial communities of uropygial secretions and of nest materials covaried with their volatile profiles, while the volatile profile of the bird secretions explained nest volatile profile. Finally, a subset of the volatiles and bacteria detected in the nest material and uropygial secretions were associated with the ectoparasitism intensity of both adult females and nestlings, and with fledging success.</p><p><strong>Conclusions: </strong>These results show that a component of animal odours is linked with the microbial communities of the host and its reproductive environment, and emphasize that the associations between bacteria, ectoparasitism and reproductive success are partially mediated by volatiles of bacterial origin. Future work should focus on mechanisms underlying the detected patterns.</p>\",\"PeriodicalId\":72201,\"journal\":{\"name\":\"Animal microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal microbiome\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42523-024-00312-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-024-00312-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Volatiles of symbiotic bacterial origin explain ectoparasitism and fledging success of hoopoes.
Background: Some parasites use olfactory cues to detect their hosts and, since bacterial symbionts are partially responsible for animal odours, they could influence host parasitism. By autoclaving nest materials of hoopoe (Upupa epops) nests before reproduction started, we explored the hypothetical links between host-associated bacteria, volatiles and parasitism. During the nestling stage, we (i) estimated the level of ectoparasitism by chewing lice (Suborder Mallophaga) in adult hoopoe females and by Carnus haemapterus flies in nestlings, and (ii) characterized microbial communities and volatile profiles of nest environments (nest material and nest cavity, respectively) and uropygial secretions.
Results: Experimental nests had less diverse bacterial communities and more diverse volatile profiles than control nests, while occupants experienced lower intensity of parasitism in experimental than in control nests. The experiment also affected beta diversity of the microbial communities of nest material and of the volatiles of the nestling uropygial secretions. Moreover, microbial communities of uropygial secretions and of nest materials covaried with their volatile profiles, while the volatile profile of the bird secretions explained nest volatile profile. Finally, a subset of the volatiles and bacteria detected in the nest material and uropygial secretions were associated with the ectoparasitism intensity of both adult females and nestlings, and with fledging success.
Conclusions: These results show that a component of animal odours is linked with the microbial communities of the host and its reproductive environment, and emphasize that the associations between bacteria, ectoparasitism and reproductive success are partially mediated by volatiles of bacterial origin. Future work should focus on mechanisms underlying the detected patterns.