Yizhong Liu , Zixiao Jia , Zixu Jiang , Xun Lin , Jianwei Liu , Qianhong Wu , Willy Susilo
{"title":"BFL-SA:通过增强型安全聚合实现基于区块链的联合学习","authors":"Yizhong Liu , Zixiao Jia , Zixu Jiang , Xun Lin , Jianwei Liu , Qianhong Wu , Willy Susilo","doi":"10.1016/j.sysarc.2024.103163","DOIUrl":null,"url":null,"abstract":"<div><p>Federated learning, involving a central server and multiple clients, aims to keep data local but raises privacy concerns like data exposure and participation privacy. Secure aggregation, especially with pairwise masking, preserves privacy without accuracy loss. Yet, issues persist like security against malicious models, central server fault tolerance, and trust in decryption keys. Resolving these challenges is vital for advancing secure federated learning systems. In this paper, we present BFL-SA, a blockchain-based federated learning scheme via enhanced secure aggregation, which addresses key challenges by integrating blockchain consensus, publicly verifiable secret sharing, and an overdue gradients aggregation module. These enhancements significantly boost security and fault tolerance while improving the efficiency of data utilization in the secure aggregation process. After security analysis, we have demonstrated that BFL-SA achieves secure aggregation even in malicious models. Through experimental comparative analysis, BFL-SA exhibits rapid secure aggregation speed and achieves 100% model aggregation accuracy.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"152 ","pages":"Article 103163"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BFL-SA: Blockchain-based federated learning via enhanced secure aggregation\",\"authors\":\"Yizhong Liu , Zixiao Jia , Zixu Jiang , Xun Lin , Jianwei Liu , Qianhong Wu , Willy Susilo\",\"doi\":\"10.1016/j.sysarc.2024.103163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Federated learning, involving a central server and multiple clients, aims to keep data local but raises privacy concerns like data exposure and participation privacy. Secure aggregation, especially with pairwise masking, preserves privacy without accuracy loss. Yet, issues persist like security against malicious models, central server fault tolerance, and trust in decryption keys. Resolving these challenges is vital for advancing secure federated learning systems. In this paper, we present BFL-SA, a blockchain-based federated learning scheme via enhanced secure aggregation, which addresses key challenges by integrating blockchain consensus, publicly verifiable secret sharing, and an overdue gradients aggregation module. These enhancements significantly boost security and fault tolerance while improving the efficiency of data utilization in the secure aggregation process. After security analysis, we have demonstrated that BFL-SA achieves secure aggregation even in malicious models. Through experimental comparative analysis, BFL-SA exhibits rapid secure aggregation speed and achieves 100% model aggregation accuracy.</p></div>\",\"PeriodicalId\":50027,\"journal\":{\"name\":\"Journal of Systems Architecture\",\"volume\":\"152 \",\"pages\":\"Article 103163\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Architecture\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383762124001000\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124001000","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
BFL-SA: Blockchain-based federated learning via enhanced secure aggregation
Federated learning, involving a central server and multiple clients, aims to keep data local but raises privacy concerns like data exposure and participation privacy. Secure aggregation, especially with pairwise masking, preserves privacy without accuracy loss. Yet, issues persist like security against malicious models, central server fault tolerance, and trust in decryption keys. Resolving these challenges is vital for advancing secure federated learning systems. In this paper, we present BFL-SA, a blockchain-based federated learning scheme via enhanced secure aggregation, which addresses key challenges by integrating blockchain consensus, publicly verifiable secret sharing, and an overdue gradients aggregation module. These enhancements significantly boost security and fault tolerance while improving the efficiency of data utilization in the secure aggregation process. After security analysis, we have demonstrated that BFL-SA achieves secure aggregation even in malicious models. Through experimental comparative analysis, BFL-SA exhibits rapid secure aggregation speed and achieves 100% model aggregation accuracy.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.