Selçuk Kutluay, Nuri Murat Yağmurlu, Ali Sercan Karakaş
{"title":"用立方赫尔墨特 B 样条法模拟修正等宽波方程的新视角","authors":"Selçuk Kutluay, Nuri Murat Yağmurlu, Ali Sercan Karakaş","doi":"10.1016/j.wavemoti.2024.103342","DOIUrl":null,"url":null,"abstract":"<div><p>In the current study, the Modified Equal-Width (MEW) equation will be handled numerically by a novel technique using collocation finite element method where cubic Hermite B-splines are used as trial functions. To test the accuracy and efficiency of the method, four different experimental problems; namely, the motion of a single solitary wave, interaction of two solitary waves, interaction of three solitary waves and the birth of solitons with the Maxwellian initial condition will be investigated. In order to verify, the validity and reliability of the proposed method, the newly obtained error norms <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> as well as three conservation constants have been compared with some of the other numerical results given in the literature at the same parameters. Furthermore, some wave profiles of the newly obtained numerical results have been given to demonstrate that each test problem exhibits accurate physical simulations. The advantage of the proposed method over other methods is the usage of inner points at Legendre and Chebyshev polynomial roots. This advantage results in better accuracy with less number of elements in spatial direction. The results of the numerical experiments clearly reveal that the presented scheme produces more accurate results even with comparatively coarser grids.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"129 ","pages":"Article 103342"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel perspective for simulations of the Modified Equal-Width Wave equation by cubic Hermite B-spline collocation method\",\"authors\":\"Selçuk Kutluay, Nuri Murat Yağmurlu, Ali Sercan Karakaş\",\"doi\":\"10.1016/j.wavemoti.2024.103342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the current study, the Modified Equal-Width (MEW) equation will be handled numerically by a novel technique using collocation finite element method where cubic Hermite B-splines are used as trial functions. To test the accuracy and efficiency of the method, four different experimental problems; namely, the motion of a single solitary wave, interaction of two solitary waves, interaction of three solitary waves and the birth of solitons with the Maxwellian initial condition will be investigated. In order to verify, the validity and reliability of the proposed method, the newly obtained error norms <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> as well as three conservation constants have been compared with some of the other numerical results given in the literature at the same parameters. Furthermore, some wave profiles of the newly obtained numerical results have been given to demonstrate that each test problem exhibits accurate physical simulations. The advantage of the proposed method over other methods is the usage of inner points at Legendre and Chebyshev polynomial roots. This advantage results in better accuracy with less number of elements in spatial direction. The results of the numerical experiments clearly reveal that the presented scheme produces more accurate results even with comparatively coarser grids.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"129 \",\"pages\":\"Article 103342\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000726\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000726","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
A novel perspective for simulations of the Modified Equal-Width Wave equation by cubic Hermite B-spline collocation method
In the current study, the Modified Equal-Width (MEW) equation will be handled numerically by a novel technique using collocation finite element method where cubic Hermite B-splines are used as trial functions. To test the accuracy and efficiency of the method, four different experimental problems; namely, the motion of a single solitary wave, interaction of two solitary waves, interaction of three solitary waves and the birth of solitons with the Maxwellian initial condition will be investigated. In order to verify, the validity and reliability of the proposed method, the newly obtained error norms and as well as three conservation constants have been compared with some of the other numerical results given in the literature at the same parameters. Furthermore, some wave profiles of the newly obtained numerical results have been given to demonstrate that each test problem exhibits accurate physical simulations. The advantage of the proposed method over other methods is the usage of inner points at Legendre and Chebyshev polynomial roots. This advantage results in better accuracy with less number of elements in spatial direction. The results of the numerical experiments clearly reveal that the presented scheme produces more accurate results even with comparatively coarser grids.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.