{"title":"通过量子技术重力飞行任务 MOCAST+ 探测海山喷发的可探测性:洪加汤加、法尼毛雷和其他较小的喷发","authors":"Carla Braitenberg, Alberto Pastorutti","doi":"10.1007/s10712-024-09839-7","DOIUrl":null,"url":null,"abstract":"<div><p>Seamount eruptions alter the bathymetry and can occur undetected due to lack of explosive character. We review documented eruptions to define whether they could be detected by a future satellite gravity mission. We adopt the noise level in acquisitions of multi-satellite constellations as in the MOCAST+ study, with a proposed payload of a quantum technology gradiometer and clock. The review of underwater volcanoes includes the Hunga Tonga Hunga Ha’apai (HTHH) islands for which the exposed surface changed during volcanic unrests of 2014/2015 and 2021/2022. The Fani Maoré submarine volcanic eruption of 2018–2021 produced a new seamount 800 m high, emerging from a depth of 3500 m, and therefore not seen above sea surface. We review further documented submarine eruptions and estimate the upper limit of the expected gravity changes. We find that a MOCAST+ type mission should allow us to detect the subsurface mass changes generated by deep ocean submarine volcanic activity for volume changes of 6.5 km<sup>3</sup> upwards, with latency of 1 year. This change is met by the HTHH and Fani Maoré volcanoes.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1331 - 1361"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09839-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Detectability of Seamount Eruptions Through a Quantum Technology Gravity Mission MOCAST+: Hunga Tonga, Fani Maoré and Other Smaller Eruptions\",\"authors\":\"Carla Braitenberg, Alberto Pastorutti\",\"doi\":\"10.1007/s10712-024-09839-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seamount eruptions alter the bathymetry and can occur undetected due to lack of explosive character. We review documented eruptions to define whether they could be detected by a future satellite gravity mission. We adopt the noise level in acquisitions of multi-satellite constellations as in the MOCAST+ study, with a proposed payload of a quantum technology gradiometer and clock. The review of underwater volcanoes includes the Hunga Tonga Hunga Ha’apai (HTHH) islands for which the exposed surface changed during volcanic unrests of 2014/2015 and 2021/2022. The Fani Maoré submarine volcanic eruption of 2018–2021 produced a new seamount 800 m high, emerging from a depth of 3500 m, and therefore not seen above sea surface. We review further documented submarine eruptions and estimate the upper limit of the expected gravity changes. We find that a MOCAST+ type mission should allow us to detect the subsurface mass changes generated by deep ocean submarine volcanic activity for volume changes of 6.5 km<sup>3</sup> upwards, with latency of 1 year. This change is met by the HTHH and Fani Maoré volcanoes.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"45 4\",\"pages\":\"1331 - 1361\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10712-024-09839-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-024-09839-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-024-09839-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Detectability of Seamount Eruptions Through a Quantum Technology Gravity Mission MOCAST+: Hunga Tonga, Fani Maoré and Other Smaller Eruptions
Seamount eruptions alter the bathymetry and can occur undetected due to lack of explosive character. We review documented eruptions to define whether they could be detected by a future satellite gravity mission. We adopt the noise level in acquisitions of multi-satellite constellations as in the MOCAST+ study, with a proposed payload of a quantum technology gradiometer and clock. The review of underwater volcanoes includes the Hunga Tonga Hunga Ha’apai (HTHH) islands for which the exposed surface changed during volcanic unrests of 2014/2015 and 2021/2022. The Fani Maoré submarine volcanic eruption of 2018–2021 produced a new seamount 800 m high, emerging from a depth of 3500 m, and therefore not seen above sea surface. We review further documented submarine eruptions and estimate the upper limit of the expected gravity changes. We find that a MOCAST+ type mission should allow us to detect the subsurface mass changes generated by deep ocean submarine volcanic activity for volume changes of 6.5 km3 upwards, with latency of 1 year. This change is met by the HTHH and Fani Maoré volcanoes.
期刊介绍:
Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.