评估线虫代谢编码在近海石油平台底栖生物监测方面的潜力。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-07-10 Epub Date: 2024-05-08 DOI:10.1016/j.scitotenv.2024.173092
J Pawlowski, K Cermakova, T Cordier, F Frontalini, L Apothéloz-Perret-Gentil, T Merzi
{"title":"评估线虫代谢编码在近海石油平台底栖生物监测方面的潜力。","authors":"J Pawlowski, K Cermakova, T Cordier, F Frontalini, L Apothéloz-Perret-Gentil, T Merzi","doi":"10.1016/j.scitotenv.2024.173092","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental DNA metabarcoding is gaining momentum as a time and cost-effective tool for biomonitoring and environmental impact assessment. Yet, its use as a replacement for the conventional marine benthic monitoring based on morphological analysis of macrofauna is still challenging. Here we propose to study the meiofauna, which is much better represented in sediment DNA samples. We focus on nematodes, which are the most numerous and diverse group of meiofauna. Our aim is to assess the potential of nematode metabarcoding to monitor impacts associated with offshore oil platform activities. To achieve this goal, we used nematode-optimized marker (18S V1V2-Nema) and universal eukaryotic marker (18S V9) region to analyse 252 sediment DNA samples collected near three offshore oil platforms in the North Sea. For both markers, we analysed changes in alpha and beta diversity in relation to distance from the platforms and environmental variables. We also defined three impact classes based on selected environmental variables that are associated with oil extraction activities and used random forest classifiers to compare the predictive performance of both datasets. Our results show that alpha- and beta-diversity of nematodes varies with the increasing distance from the platforms. The variables directly related to platform activity, such as Ba and THC, strongly influence the nematode community. The nematode metabarcoding data provide more robust predictive models than eukaryotic data. Furthermore, the nematode community appears more stable in time and space, as illustrated by the overlap of nematode datasets obtained from the same platform three years apart. A significative negative correlation between distance and Shannon diversity also advocates for higher performance of the V1V2-Nema over the V9. Overall, these results suggest that the sensitivity of nematodes is higher compared to the eukaryotic community. Hence, nematode metabarcoding has the potential to become an effective tool for benthic monitoring in marine environment.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the potential of nematode metabarcoding for benthic monitoring of offshore oil platforms.\",\"authors\":\"J Pawlowski, K Cermakova, T Cordier, F Frontalini, L Apothéloz-Perret-Gentil, T Merzi\",\"doi\":\"10.1016/j.scitotenv.2024.173092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental DNA metabarcoding is gaining momentum as a time and cost-effective tool for biomonitoring and environmental impact assessment. Yet, its use as a replacement for the conventional marine benthic monitoring based on morphological analysis of macrofauna is still challenging. Here we propose to study the meiofauna, which is much better represented in sediment DNA samples. We focus on nematodes, which are the most numerous and diverse group of meiofauna. Our aim is to assess the potential of nematode metabarcoding to monitor impacts associated with offshore oil platform activities. To achieve this goal, we used nematode-optimized marker (18S V1V2-Nema) and universal eukaryotic marker (18S V9) region to analyse 252 sediment DNA samples collected near three offshore oil platforms in the North Sea. For both markers, we analysed changes in alpha and beta diversity in relation to distance from the platforms and environmental variables. We also defined three impact classes based on selected environmental variables that are associated with oil extraction activities and used random forest classifiers to compare the predictive performance of both datasets. Our results show that alpha- and beta-diversity of nematodes varies with the increasing distance from the platforms. The variables directly related to platform activity, such as Ba and THC, strongly influence the nematode community. The nematode metabarcoding data provide more robust predictive models than eukaryotic data. Furthermore, the nematode community appears more stable in time and space, as illustrated by the overlap of nematode datasets obtained from the same platform three years apart. A significative negative correlation between distance and Shannon diversity also advocates for higher performance of the V1V2-Nema over the V9. Overall, these results suggest that the sensitivity of nematodes is higher compared to the eukaryotic community. Hence, nematode metabarcoding has the potential to become an effective tool for benthic monitoring in marine environment.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.173092\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.173092","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

环境 DNA 元条码作为一种省时、经济的生物监测和环境影响评估工具,正日益受到重视。然而,用它来替代传统的基于大型底栖生物形态分析的海洋底栖生物监测方法仍然具有挑战性。在此,我们建议研究小型底栖生物,它们在沉积物 DNA 样本中的代表性要好得多。我们的研究重点是线虫,它们是数量最多、种类最丰富的小型底栖生物。我们的目的是评估线虫代谢编码在监测近海石油平台活动相关影响方面的潜力。为了实现这一目标,我们使用线虫优化标记(18S V1V2-Nema)和通用真核标记(18S V9)区域分析了在北海三个近海石油平台附近采集的 252 份沉积物 DNA 样本。对于这两个标记,我们分析了α和β多样性的变化与平台距离和环境变量的关系。我们还根据与石油开采活动相关的选定环境变量定义了三个影响等级,并使用随机森林分类器比较了两个数据集的预测性能。我们的结果表明,线虫的α-和β-多样性随着与平台距离的增加而变化。与平台活动直接相关的变量,如 Ba 和 THC,对线虫群落有很大影响。与真核生物数据相比,线虫代谢编码数据能提供更可靠的预测模型。此外,线虫群落在时间和空间上似乎更加稳定,从同一平台上获得的线虫数据集相隔三年后出现重叠就说明了这一点。距离与香农多样性之间的显著负相关关系也表明 V1V2-Nema 比 V9 性能更高。总之,这些结果表明,与真核生物群落相比,线虫的灵敏度更高。因此,线虫代谢编码有可能成为海洋环境底栖生物监测的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the potential of nematode metabarcoding for benthic monitoring of offshore oil platforms.

Environmental DNA metabarcoding is gaining momentum as a time and cost-effective tool for biomonitoring and environmental impact assessment. Yet, its use as a replacement for the conventional marine benthic monitoring based on morphological analysis of macrofauna is still challenging. Here we propose to study the meiofauna, which is much better represented in sediment DNA samples. We focus on nematodes, which are the most numerous and diverse group of meiofauna. Our aim is to assess the potential of nematode metabarcoding to monitor impacts associated with offshore oil platform activities. To achieve this goal, we used nematode-optimized marker (18S V1V2-Nema) and universal eukaryotic marker (18S V9) region to analyse 252 sediment DNA samples collected near three offshore oil platforms in the North Sea. For both markers, we analysed changes in alpha and beta diversity in relation to distance from the platforms and environmental variables. We also defined three impact classes based on selected environmental variables that are associated with oil extraction activities and used random forest classifiers to compare the predictive performance of both datasets. Our results show that alpha- and beta-diversity of nematodes varies with the increasing distance from the platforms. The variables directly related to platform activity, such as Ba and THC, strongly influence the nematode community. The nematode metabarcoding data provide more robust predictive models than eukaryotic data. Furthermore, the nematode community appears more stable in time and space, as illustrated by the overlap of nematode datasets obtained from the same platform three years apart. A significative negative correlation between distance and Shannon diversity also advocates for higher performance of the V1V2-Nema over the V9. Overall, these results suggest that the sensitivity of nematodes is higher compared to the eukaryotic community. Hence, nematode metabarcoding has the potential to become an effective tool for benthic monitoring in marine environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
A spatio-temporal analysis of environmental fate and transport processes of pesticides and their transformation products in agricultural landscapes dominated by subsurface drainage with SWAT. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. Effects of ambient air pollution from shipping on mortality: A systematic review. Exploring avian exposure to parent polycyclic aromatic hydrocarbons (PAHs): Using the common eider Somateria mollissima in a global context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1