{"title":"决定南大洋次极地营养物质分布和初级生产力的海洋学因素","authors":"Manami Tozawa , Daiki Nomura , Kaihe Yamazaki , Masaaki Kiuchi , Daisuke Hirano , Shigeru Aoki , Hiroko Sasaki , Hiroto Murase","doi":"10.1016/j.pocean.2024.103266","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the spatial distributions and determinants of nutrient concentrations, we measured NO<sub>3</sub><sup>−</sup>+NO<sub>2</sub><sup>−</sup>, PO<sub>4</sub><sup>3−</sup>, and Si(OH)<sub>4</sub> concentrations in the eastern Indian Ocean sector of the Antarctic Ocean (80 − 150°E, south of 60°S) between December 2018 and February 2019. In the region influenced by the Antarctic Circumpolar Current, nutrient concentrations were increased by nutrients supplied from the deep layer and by organic matter decomposition and remineralization within the seasonal pycnocline after the development of strong stratification. Strong stratification also enhanced phytoplankton growth and nutrient consumption by photosynthesis. In contrast, in the subpolar region, nutrient concentrations were increased by nutrients supplied by brine discharged during sea ice formation and decreased by dilution with sea ice meltwater. Although high salinity in the surface and subsurface layers corresponded well to upwelling areas around subpolar subgyres, high salinity was not necessarily correlated with nutrient concentrations. We estimated primary production both from in situ nutrient data and from satellite-acquired chlorophyll-<em>a</em> data. According to both estimation methods, primary production was high in the subpolar region, especially around 120 − 130°E. However, nutrient-based estimation also showed high production in coastal areas where, because of sea ice and cloud cover, estimation based on satellite data was not possible. To understand primary production in seasonal ice areas, the best estimation method should be selected for the research goals or multiple methods should be used in combination.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"225 ","pages":"Article 103266"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124000727/pdfft?md5=f32c170ccf691df557b9c7b2a90109e7&pid=1-s2.0-S0079661124000727-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Oceanographic factors determining the distribution of nutrients and primary production in the subpolar Southern Ocean\",\"authors\":\"Manami Tozawa , Daiki Nomura , Kaihe Yamazaki , Masaaki Kiuchi , Daisuke Hirano , Shigeru Aoki , Hiroko Sasaki , Hiroto Murase\",\"doi\":\"10.1016/j.pocean.2024.103266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate the spatial distributions and determinants of nutrient concentrations, we measured NO<sub>3</sub><sup>−</sup>+NO<sub>2</sub><sup>−</sup>, PO<sub>4</sub><sup>3−</sup>, and Si(OH)<sub>4</sub> concentrations in the eastern Indian Ocean sector of the Antarctic Ocean (80 − 150°E, south of 60°S) between December 2018 and February 2019. In the region influenced by the Antarctic Circumpolar Current, nutrient concentrations were increased by nutrients supplied from the deep layer and by organic matter decomposition and remineralization within the seasonal pycnocline after the development of strong stratification. Strong stratification also enhanced phytoplankton growth and nutrient consumption by photosynthesis. In contrast, in the subpolar region, nutrient concentrations were increased by nutrients supplied by brine discharged during sea ice formation and decreased by dilution with sea ice meltwater. Although high salinity in the surface and subsurface layers corresponded well to upwelling areas around subpolar subgyres, high salinity was not necessarily correlated with nutrient concentrations. We estimated primary production both from in situ nutrient data and from satellite-acquired chlorophyll-<em>a</em> data. According to both estimation methods, primary production was high in the subpolar region, especially around 120 − 130°E. However, nutrient-based estimation also showed high production in coastal areas where, because of sea ice and cloud cover, estimation based on satellite data was not possible. To understand primary production in seasonal ice areas, the best estimation method should be selected for the research goals or multiple methods should be used in combination.</p></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"225 \",\"pages\":\"Article 103266\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079661124000727/pdfft?md5=f32c170ccf691df557b9c7b2a90109e7&pid=1-s2.0-S0079661124000727-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124000727\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124000727","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Oceanographic factors determining the distribution of nutrients and primary production in the subpolar Southern Ocean
To investigate the spatial distributions and determinants of nutrient concentrations, we measured NO3−+NO2−, PO43−, and Si(OH)4 concentrations in the eastern Indian Ocean sector of the Antarctic Ocean (80 − 150°E, south of 60°S) between December 2018 and February 2019. In the region influenced by the Antarctic Circumpolar Current, nutrient concentrations were increased by nutrients supplied from the deep layer and by organic matter decomposition and remineralization within the seasonal pycnocline after the development of strong stratification. Strong stratification also enhanced phytoplankton growth and nutrient consumption by photosynthesis. In contrast, in the subpolar region, nutrient concentrations were increased by nutrients supplied by brine discharged during sea ice formation and decreased by dilution with sea ice meltwater. Although high salinity in the surface and subsurface layers corresponded well to upwelling areas around subpolar subgyres, high salinity was not necessarily correlated with nutrient concentrations. We estimated primary production both from in situ nutrient data and from satellite-acquired chlorophyll-a data. According to both estimation methods, primary production was high in the subpolar region, especially around 120 − 130°E. However, nutrient-based estimation also showed high production in coastal areas where, because of sea ice and cloud cover, estimation based on satellite data was not possible. To understand primary production in seasonal ice areas, the best estimation method should be selected for the research goals or multiple methods should be used in combination.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.