将 MATSim 与一套外部机队模拟集成的协同模拟系统

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Simulation Modelling Practice and Theory Pub Date : 2024-05-09 DOI:10.1016/j.simpat.2024.102957
Hai Yang, Ethan Wong, Haggai Davis III, Joseph Y.J. Chow
{"title":"将 MATSim 与一套外部机队模拟集成的协同模拟系统","authors":"Hai Yang,&nbsp;Ethan Wong,&nbsp;Haggai Davis III,&nbsp;Joseph Y.J. Chow","doi":"10.1016/j.simpat.2024.102957","DOIUrl":null,"url":null,"abstract":"<div><p>Simulation plays a crucial role in transportation studies. However, most simulation tools are individually developed to tackle specific transportation problems, making it challenging to incorporate multiple simulation tools into a unified setting and generate collaborative output. In this study, we develop a co-simulation system that integrates MATSim with an external fleet-based simulator to extend MATSim's functionalities. The overall structure enables the integration of MATSim simulation and multiple external simulations, which results in a cohesive simulation output. Though only one external simulator engages in the current development, the framework can be easily adapted to involve more fleet-based simulators that meet the system requirements. As a result, more complex transportation systems can be simulated using the framework without the need to develop these dedicated MATSim extensions, e.g. any new fleet algorithm from emergent R&amp;D. The developed co-simulation system is named the Fleet Demand (FD) Simulator. We demonstrate the functionality of the FD Simulator by showcasing a simulation scenario involving MATSim and a ride-pooling simulator, which integrates novel ride-pooling services into the MATSim environment. First, we show the co-simulation system's capability to generate reliable results consistent with those produced by using the \"DRT\" extension-enabled MATSim. Less than 10 % discrepancies between the two results are observed. We then use the FD Simulator to evaluate ride-pooling services under various scenarios, where we assign different service parameters to two service fleets. Operations of the two fleets are simulated in two separate external simulation environments, showcasing the FD simulator's ability of engaging multiple simultaneous simulations. The affected service parameters are not adjustable in the \"DRT\" extension, showing the advantage of the co-simulation system. By running these scenarios using the FD Simulator, travel decisions made by agents in MATSim are observed when facing heterogeneous ride-pooling services. The results highlight the relevance of the co-simulation system in evaluating complex transportation systems.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A co-simulation system that integrates MATSim with a set of external fleet simulations\",\"authors\":\"Hai Yang,&nbsp;Ethan Wong,&nbsp;Haggai Davis III,&nbsp;Joseph Y.J. Chow\",\"doi\":\"10.1016/j.simpat.2024.102957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simulation plays a crucial role in transportation studies. However, most simulation tools are individually developed to tackle specific transportation problems, making it challenging to incorporate multiple simulation tools into a unified setting and generate collaborative output. In this study, we develop a co-simulation system that integrates MATSim with an external fleet-based simulator to extend MATSim's functionalities. The overall structure enables the integration of MATSim simulation and multiple external simulations, which results in a cohesive simulation output. Though only one external simulator engages in the current development, the framework can be easily adapted to involve more fleet-based simulators that meet the system requirements. As a result, more complex transportation systems can be simulated using the framework without the need to develop these dedicated MATSim extensions, e.g. any new fleet algorithm from emergent R&amp;D. The developed co-simulation system is named the Fleet Demand (FD) Simulator. We demonstrate the functionality of the FD Simulator by showcasing a simulation scenario involving MATSim and a ride-pooling simulator, which integrates novel ride-pooling services into the MATSim environment. First, we show the co-simulation system's capability to generate reliable results consistent with those produced by using the \\\"DRT\\\" extension-enabled MATSim. Less than 10 % discrepancies between the two results are observed. We then use the FD Simulator to evaluate ride-pooling services under various scenarios, where we assign different service parameters to two service fleets. Operations of the two fleets are simulated in two separate external simulation environments, showcasing the FD simulator's ability of engaging multiple simultaneous simulations. The affected service parameters are not adjustable in the \\\"DRT\\\" extension, showing the advantage of the co-simulation system. By running these scenarios using the FD Simulator, travel decisions made by agents in MATSim are observed when facing heterogeneous ride-pooling services. The results highlight the relevance of the co-simulation system in evaluating complex transportation systems.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24000716\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000716","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

模拟在交通研究中发挥着至关重要的作用。然而,大多数仿真工具都是为解决特定的交通问题而单独开发的,因此将多种仿真工具整合到一个统一的环境中并生成协同输出具有挑战性。在本研究中,我们开发了一个协同仿真系统,将 MATSim 与基于车队的外部仿真器集成,以扩展 MATSim 的功能。该系统的整体结构实现了 MATSim 仿真与多个外部仿真的集成,从而产生具有凝聚力的仿真输出。虽然目前的开发工作只涉及一个外部模拟器,但该框架可以很容易地进行调整,使更多符合系统要求的基于车队的模拟器参与进来。因此,使用该框架可以模拟更复杂的运输系统,而无需开发这些专用的 MATSim 扩展,例如任何来自新兴 R&D 的新车队算法。开发的协同仿真系统被命名为 "车队需求(FD)仿真器"。我们通过展示涉及 MATSim 和拼车模拟器的模拟场景来演示 FD 模拟器的功能,该模拟器将新型拼车服务集成到 MATSim 环境中。首先,我们展示了协同模拟系统生成可靠结果的能力,与使用支持 "DRT "扩展的 MATSim 生成的结果一致。两种结果之间的差异不到 10%。然后,我们使用 FD 模拟器对各种情况下的拼车服务进行评估,我们为两个服务车队分配了不同的服务参数。两支车队的运营在两个独立的外部模拟环境中进行模拟,展示了 FD 模拟器同时进行多个模拟的能力。在 "DRT "扩展中,受影响的服务参数不可调整,这显示了协同模拟系统的优势。通过使用 FD 模拟器运行这些场景,可以观察到 MATSim 中的代理在面对异构拼车服务时做出的出行决策。结果凸显了联合模拟系统在评估复杂交通系统方面的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A co-simulation system that integrates MATSim with a set of external fleet simulations

Simulation plays a crucial role in transportation studies. However, most simulation tools are individually developed to tackle specific transportation problems, making it challenging to incorporate multiple simulation tools into a unified setting and generate collaborative output. In this study, we develop a co-simulation system that integrates MATSim with an external fleet-based simulator to extend MATSim's functionalities. The overall structure enables the integration of MATSim simulation and multiple external simulations, which results in a cohesive simulation output. Though only one external simulator engages in the current development, the framework can be easily adapted to involve more fleet-based simulators that meet the system requirements. As a result, more complex transportation systems can be simulated using the framework without the need to develop these dedicated MATSim extensions, e.g. any new fleet algorithm from emergent R&D. The developed co-simulation system is named the Fleet Demand (FD) Simulator. We demonstrate the functionality of the FD Simulator by showcasing a simulation scenario involving MATSim and a ride-pooling simulator, which integrates novel ride-pooling services into the MATSim environment. First, we show the co-simulation system's capability to generate reliable results consistent with those produced by using the "DRT" extension-enabled MATSim. Less than 10 % discrepancies between the two results are observed. We then use the FD Simulator to evaluate ride-pooling services under various scenarios, where we assign different service parameters to two service fleets. Operations of the two fleets are simulated in two separate external simulation environments, showcasing the FD simulator's ability of engaging multiple simultaneous simulations. The affected service parameters are not adjustable in the "DRT" extension, showing the advantage of the co-simulation system. By running these scenarios using the FD Simulator, travel decisions made by agents in MATSim are observed when facing heterogeneous ride-pooling services. The results highlight the relevance of the co-simulation system in evaluating complex transportation systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
期刊最新文献
Machine learning-assisted microscopic public transportation simulation: Two coupling strategies A novel energy-efficient and cost-effective task offloading approach for UAV-enabled MEC with LEO enhancement in Internet of Remote Things networks An AI-driven solution to prevent adversarial attacks on mobile Vehicle-to-Microgrid services Advancements in traffic simulation for enhanced road safety: A review Investigation on directional rock fracture mechanism under instantaneous expansion from the perspective of damage mechanics: A 3-D simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1