{"title":"从混合型数据中对基于图的依赖关系进行贝叶斯推断","authors":"Chiara Galimberti , Stefano Peluso , Federico Castelletti","doi":"10.1016/j.jmva.2024.105323","DOIUrl":null,"url":null,"abstract":"<div><p>Mixed data comprise measurements of different types, with both categorical and continuous variables, and can be found in various areas, such as in life science or industrial processes. Inferring conditional independencies from the data is crucial to understand how these variables relate to each other. To this end, graphical models provide an effective framework, which adopts a graph-based representation of the joint distribution to encode such dependence relations. This framework has been extensively studied in the Gaussian and categorical settings separately; on the other hand, the literature addressing this problem in presence of mixed data is still narrow. We propose a Bayesian model for the analysis of mixed data based on the notion of Conditional Gaussian (CG) distribution. Our method is based on a canonical parameterization of the CG distribution, which allows for posterior inference of parameters indexing the (marginal) distributions of continuous and categorical variables, as well as expressing the interactions between the two types of variables. We derive the limiting Gaussian distributions, centered on the correct unknown value and with vanishing variance, for the Bayesian estimators of the canonical parameters expressing continuous, discrete and mixed interactions. In addition, we implement the proposed method for structure learning purposes, namely to infer the underlying graph of conditional independencies. When compared to alternative frequentist methods, our approach shows favorable results both in a simulation setting and in real-data applications, besides allowing for a coherent uncertainty quantification around parameter estimates.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian inference of graph-based dependencies from mixed-type data\",\"authors\":\"Chiara Galimberti , Stefano Peluso , Federico Castelletti\",\"doi\":\"10.1016/j.jmva.2024.105323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mixed data comprise measurements of different types, with both categorical and continuous variables, and can be found in various areas, such as in life science or industrial processes. Inferring conditional independencies from the data is crucial to understand how these variables relate to each other. To this end, graphical models provide an effective framework, which adopts a graph-based representation of the joint distribution to encode such dependence relations. This framework has been extensively studied in the Gaussian and categorical settings separately; on the other hand, the literature addressing this problem in presence of mixed data is still narrow. We propose a Bayesian model for the analysis of mixed data based on the notion of Conditional Gaussian (CG) distribution. Our method is based on a canonical parameterization of the CG distribution, which allows for posterior inference of parameters indexing the (marginal) distributions of continuous and categorical variables, as well as expressing the interactions between the two types of variables. We derive the limiting Gaussian distributions, centered on the correct unknown value and with vanishing variance, for the Bayesian estimators of the canonical parameters expressing continuous, discrete and mixed interactions. In addition, we implement the proposed method for structure learning purposes, namely to infer the underlying graph of conditional independencies. When compared to alternative frequentist methods, our approach shows favorable results both in a simulation setting and in real-data applications, besides allowing for a coherent uncertainty quantification around parameter estimates.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000307\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000307","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian inference of graph-based dependencies from mixed-type data
Mixed data comprise measurements of different types, with both categorical and continuous variables, and can be found in various areas, such as in life science or industrial processes. Inferring conditional independencies from the data is crucial to understand how these variables relate to each other. To this end, graphical models provide an effective framework, which adopts a graph-based representation of the joint distribution to encode such dependence relations. This framework has been extensively studied in the Gaussian and categorical settings separately; on the other hand, the literature addressing this problem in presence of mixed data is still narrow. We propose a Bayesian model for the analysis of mixed data based on the notion of Conditional Gaussian (CG) distribution. Our method is based on a canonical parameterization of the CG distribution, which allows for posterior inference of parameters indexing the (marginal) distributions of continuous and categorical variables, as well as expressing the interactions between the two types of variables. We derive the limiting Gaussian distributions, centered on the correct unknown value and with vanishing variance, for the Bayesian estimators of the canonical parameters expressing continuous, discrete and mixed interactions. In addition, we implement the proposed method for structure learning purposes, namely to infer the underlying graph of conditional independencies. When compared to alternative frequentist methods, our approach shows favorable results both in a simulation setting and in real-data applications, besides allowing for a coherent uncertainty quantification around parameter estimates.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.