{"title":"溶剂重组模式发挥主导作用","authors":"Ahmad Elgazzar, Haotian Wang","doi":"10.1038/s44286-024-00065-x","DOIUrl":null,"url":null,"abstract":"Accurately modeling CO2 electroreduction is key to advancing the technology and understanding its productivity and CO2 utilization trends. Now, Marcus–Hush–Chidsey theory offers accurate predictions of experimental results, leading to further insights beyond reaction kinetics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent reorganization model takes the lead\",\"authors\":\"Ahmad Elgazzar, Haotian Wang\",\"doi\":\"10.1038/s44286-024-00065-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately modeling CO2 electroreduction is key to advancing the technology and understanding its productivity and CO2 utilization trends. Now, Marcus–Hush–Chidsey theory offers accurate predictions of experimental results, leading to further insights beyond reaction kinetics.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00065-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00065-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurately modeling CO2 electroreduction is key to advancing the technology and understanding its productivity and CO2 utilization trends. Now, Marcus–Hush–Chidsey theory offers accurate predictions of experimental results, leading to further insights beyond reaction kinetics.