Ting Qi, Liyang Song, Yazhou Guo, Chang Chen, Jian Yang
{"title":"从基因关联到基因:方法、应用和挑战。","authors":"Ting Qi, Liyang Song, Yazhou Guo, Chang Chen, Jian Yang","doi":"10.1016/j.tig.2024.04.008","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":13.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From genetic associations to genes: methods, applications, and challenges.\",\"authors\":\"Ting Qi, Liyang Song, Yazhou Guo, Chang Chen, Jian Yang\",\"doi\":\"10.1016/j.tig.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2024.04.008\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2024.04.008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
From genetic associations to genes: methods, applications, and challenges.
Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.