用于锌离子水电池的具有锌离子插层促进作用的 MnO2 超结构阴极

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-05-09 DOI:10.1016/j.jcis.2024.05.052
Aina Zhang , Xu Zhang , Hainan Zhao , Helmut Ehrenberg , Gang Chen , Ismael Saadoune , Qiang Fu , Yingjin Wei , Yizhan Wang
{"title":"用于锌离子水电池的具有锌离子插层促进作用的 MnO2 超结构阴极","authors":"Aina Zhang ,&nbsp;Xu Zhang ,&nbsp;Hainan Zhao ,&nbsp;Helmut Ehrenberg ,&nbsp;Gang Chen ,&nbsp;Ismael Saadoune ,&nbsp;Qiang Fu ,&nbsp;Yingjin Wei ,&nbsp;Yizhan Wang","doi":"10.1016/j.jcis.2024.05.052","DOIUrl":null,"url":null,"abstract":"<div><p>The simultaneous intercalation of protons and Zn<sup>2+</sup> ions in aqueous electrolytes presents a significant obstacle to the widespread adoption of aqueous zinc ion batteries (AZIBs) for large-scale use, a challenge that has yet to be overcome. To address this, we have developed a MnO<sub>2</sub>/tetramethylammonium (TMA) superstructure with an enlarged interlayer spacing, designed specifically to control H<sup>+</sup>/Zn<sup>2+</sup> co-intercalation in AZIBs. Within this superstructure, the pre-intercalated TMA<sup>+</sup> ions work as spacers to stabilize the layered structure of MnO<sub>2</sub> cathodes and expand the interlayer spacing substantially by 28 % to 0.92 nm. Evidence from <em>in operando</em> pH measurements, <em>in operando</em> synchrotron X-ray diffraction, and X-ray absorption spectroscopy shows that the enlarged interlayer spacing facilitates the diffusion and intercalation of Zn<sup>2+</sup> ions (which have a large ionic radius) into the MnO<sub>2</sub> cathodes. This spacing also helps suppress the competing H<sup>+</sup> intercalation and the formation of detrimental Zn<sub>4</sub>(OH)<sub>6</sub>SO<sub>4</sub>·5H<sub>2</sub>O, thereby enhancing the structural stability of MnO<sub>2</sub>. As a result, enhanced Zn<sup>2+</sup> storage properties, including excellent capacity and long cycle stability, are achieved.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MnO2 superstructure cathode with boosted zinc ion intercalation for aqueous zinc ion batteries\",\"authors\":\"Aina Zhang ,&nbsp;Xu Zhang ,&nbsp;Hainan Zhao ,&nbsp;Helmut Ehrenberg ,&nbsp;Gang Chen ,&nbsp;Ismael Saadoune ,&nbsp;Qiang Fu ,&nbsp;Yingjin Wei ,&nbsp;Yizhan Wang\",\"doi\":\"10.1016/j.jcis.2024.05.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The simultaneous intercalation of protons and Zn<sup>2+</sup> ions in aqueous electrolytes presents a significant obstacle to the widespread adoption of aqueous zinc ion batteries (AZIBs) for large-scale use, a challenge that has yet to be overcome. To address this, we have developed a MnO<sub>2</sub>/tetramethylammonium (TMA) superstructure with an enlarged interlayer spacing, designed specifically to control H<sup>+</sup>/Zn<sup>2+</sup> co-intercalation in AZIBs. Within this superstructure, the pre-intercalated TMA<sup>+</sup> ions work as spacers to stabilize the layered structure of MnO<sub>2</sub> cathodes and expand the interlayer spacing substantially by 28 % to 0.92 nm. Evidence from <em>in operando</em> pH measurements, <em>in operando</em> synchrotron X-ray diffraction, and X-ray absorption spectroscopy shows that the enlarged interlayer spacing facilitates the diffusion and intercalation of Zn<sup>2+</sup> ions (which have a large ionic radius) into the MnO<sub>2</sub> cathodes. This spacing also helps suppress the competing H<sup>+</sup> intercalation and the formation of detrimental Zn<sub>4</sub>(OH)<sub>6</sub>SO<sub>4</sub>·5H<sub>2</sub>O, thereby enhancing the structural stability of MnO<sub>2</sub>. As a result, enhanced Zn<sup>2+</sup> storage properties, including excellent capacity and long cycle stability, are achieved.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724010294\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724010294","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

质子和 Zn2+ 离子在水溶液电解质中同时插层是锌离子水溶液电池 (AZIB) 大规模应用的一个重大障碍,这一挑战尚待克服。为了解决这个问题,我们开发了一种具有更大层间距的 MnO2/ 四甲基铵 (TMA) 超结构,专门用于控制 AZIB 中的 H+/Zn2+ 共掺杂。在这种上层结构中,预掺杂的 TMA+ 离子可作为间隔物稳定二氧化锰阴极的层状结构,并将层间距大幅扩大 28% 至 0.92 nm。通过操作中 pH 值测量、操作中同步辐射 X 射线衍射和 X 射线吸收光谱分析得出的证据表明,层间间隔的扩大有利于 Zn2+ 离子(具有较大的离子半径)向 MnO2 阴极的扩散和插层。这种间距还有助于抑制相互竞争的 H+ 插层和有害 Zn4(OH)6SO4-5H2O 的形成,从而提高 MnO2 的结构稳定性。因此,Zn2+ 的存储特性得到了增强,包括出色的容量和长周期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MnO2 superstructure cathode with boosted zinc ion intercalation for aqueous zinc ion batteries

The simultaneous intercalation of protons and Zn2+ ions in aqueous electrolytes presents a significant obstacle to the widespread adoption of aqueous zinc ion batteries (AZIBs) for large-scale use, a challenge that has yet to be overcome. To address this, we have developed a MnO2/tetramethylammonium (TMA) superstructure with an enlarged interlayer spacing, designed specifically to control H+/Zn2+ co-intercalation in AZIBs. Within this superstructure, the pre-intercalated TMA+ ions work as spacers to stabilize the layered structure of MnO2 cathodes and expand the interlayer spacing substantially by 28 % to 0.92 nm. Evidence from in operando pH measurements, in operando synchrotron X-ray diffraction, and X-ray absorption spectroscopy shows that the enlarged interlayer spacing facilitates the diffusion and intercalation of Zn2+ ions (which have a large ionic radius) into the MnO2 cathodes. This spacing also helps suppress the competing H+ intercalation and the formation of detrimental Zn4(OH)6SO4·5H2O, thereby enhancing the structural stability of MnO2. As a result, enhanced Zn2+ storage properties, including excellent capacity and long cycle stability, are achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1