女性的衰老对轻度动态运动时腹腔动脉血流的变化影响甚微。

IF 2.2 3区 医学 Q3 PHYSIOLOGY American journal of physiology. Regulatory, integrative and comparative physiology Pub Date : 2024-07-01 Epub Date: 2024-05-13 DOI:10.1152/ajpregu.00012.2024
Kana Shiozawa, Mitsuru Saito, Jordan B Lee, Natsuki Seo, Haruna Kondo, Hideaki Kashima, Masako Yamaoka Endo, Koji Ishida, Philip J Millar, Keisho Katayama
{"title":"女性的衰老对轻度动态运动时腹腔动脉血流的变化影响甚微。","authors":"Kana Shiozawa, Mitsuru Saito, Jordan B Lee, Natsuki Seo, Haruna Kondo, Hideaki Kashima, Masako Yamaoka Endo, Koji Ishida, Philip J Millar, Keisho Katayama","doi":"10.1152/ajpregu.00012.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, <i>P</i> = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, <i>P</i> = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, <i>P</i> = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.<b>NEW & NOTEWORTHY</b> During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R14-R24"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aging in females has minimal effect on changes in celiac artery blood flow during dynamic light-intensity exercise.\",\"authors\":\"Kana Shiozawa, Mitsuru Saito, Jordan B Lee, Natsuki Seo, Haruna Kondo, Hideaki Kashima, Masako Yamaoka Endo, Koji Ishida, Philip J Millar, Keisho Katayama\",\"doi\":\"10.1152/ajpregu.00012.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, <i>P</i> = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, <i>P</i> = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, <i>P</i> = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.<b>NEW & NOTEWORTHY</b> During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"R14-R24\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00012.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00012.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在动态运动过程中,活动肌肉的血流量和动脉血压(ABP)会增加,而非活动器官(如脾脏器官和非活动肢体)的血流量则会减少。衰老会导致女性对运动的 ABP 反应加剧,但这是否与脾脏血管收缩加剧有关尚不清楚。本研究试图阐明女性衰老对轻度动态运动时腹腔动脉血流的影响。12 名健康的年轻女性(YF:20±2 岁,平均±SD)和 12 名健康的老年女性(OF:71±4 岁)在 30% 的心率储备下进行了 4 分钟的动态膝关节伸屈运动。计算运动期间平均动脉血压 (MAP)、腹腔动脉平均血流量 (celMBF) 和腹腔血管传导 (celVC) 与基线相比的绝对变化 (Δ)。ABP 使用自动血压计测量,celMBF 通过多普勒超声波记录。运动时,OF 的 MAP 升高幅度大于 YF(YF:+14±7mmHg,OF:+24±13mmHg,P=0.028)。运动时,两组的血压均下降,但 YF 和 OF 的反应无显著差异(YF:-93.0±66.1mL/min,OF:-89.6±64.0mL/min,P=0.951)。在运动过程中,CelVC 也有所下降,并在运动过程中保持低于基线。然而,YF 和 OF 的反应并无不同(YF:-1.8±1.0mL/min/mmHg,OF:-1.5±0.6mL/min/mmHg,P=0.517)。这些结果表明,女性的衰老对轻强度动态运动时脾动脉血流动力学反应的影响微乎其微,这表明 OF 运动时夸张的 ABP 反应并不是因为脾血管收缩更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aging in females has minimal effect on changes in celiac artery blood flow during dynamic light-intensity exercise.

Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, P = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, P = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, P = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.NEW & NOTEWORTHY During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
期刊最新文献
Cerebral hemodynamic and systemic physiological changes in trained freedivers completing sled-assisted dives to two different depths. Modulation of cutaneous vasodilation by reactive oxygen species during local and whole body heating in young and older adults. Relationship between regional sympathetic vascular transduction and sympathetic transduction of blood pressure in young adults at rest. Cerebral vasomotor reactivity to carbon dioxide using the rebreathe technique: assessment of within-day and between-day repeatability. Steering toward new horizons: a vision for the future of the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1