Minghao Shao , Sen Ye , Yanzhen Chen , Changzhang Yu , Wei Zhu
{"title":"缺氧性 ADSCs 外泌体通过 circ-Wdfy3 递送和抑制铁变态反应改善脊髓损伤后的神经元损伤。","authors":"Minghao Shao , Sen Ye , Yanzhen Chen , Changzhang Yu , Wei Zhu","doi":"10.1016/j.neuint.2024.105759","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear.</p></div><div><h3>Methods</h3><p>Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining.</p></div><div><h3>Results</h3><p>Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis.</p></div><div><h3>Conclusions</h3><p>circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes from hypoxic ADSCs ameliorate neuronal damage post spinal cord injury through circ-Wdfy3 delivery and inhibition of ferroptosis\",\"authors\":\"Minghao Shao , Sen Ye , Yanzhen Chen , Changzhang Yu , Wei Zhu\",\"doi\":\"10.1016/j.neuint.2024.105759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear.</p></div><div><h3>Methods</h3><p>Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining.</p></div><div><h3>Results</h3><p>Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis.</p></div><div><h3>Conclusions</h3><p>circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.</p></div>\",\"PeriodicalId\":398,\"journal\":{\"name\":\"Neurochemistry international\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemistry international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019701862400086X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019701862400086X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exosomes from hypoxic ADSCs ameliorate neuronal damage post spinal cord injury through circ-Wdfy3 delivery and inhibition of ferroptosis
Background
Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear.
Methods
Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining.
Results
Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis.
Conclusions
circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.