Tutku Aykanat, Darryl McLennan, Neil B Metcalfe, Jenni M Prokkola
{"title":"大西洋鲑鱼的早期存活与父母基因型中与成熟时间有关的基因位点有关。","authors":"Tutku Aykanat, Darryl McLennan, Neil B Metcalfe, Jenni M Prokkola","doi":"10.1093/evolut/qpae072","DOIUrl":null,"url":null,"abstract":"<p><p>Large effect loci often contain genes with critical developmental functions and potentially broad effects across life stages. However, their life stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity and several physiological and behavioral traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early-life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high nutrients but not in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation but by maternal genotypes in the six6 locus and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects of large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":"1441-1452"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early survival in Atlantic salmon is associated with parental genotypes at loci linked to timing of maturation.\",\"authors\":\"Tutku Aykanat, Darryl McLennan, Neil B Metcalfe, Jenni M Prokkola\",\"doi\":\"10.1093/evolut/qpae072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large effect loci often contain genes with critical developmental functions and potentially broad effects across life stages. However, their life stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity and several physiological and behavioral traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early-life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high nutrients but not in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation but by maternal genotypes in the six6 locus and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects of large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.</p>\",\"PeriodicalId\":12082,\"journal\":{\"name\":\"Evolution\",\"volume\":\" \",\"pages\":\"1441-1452\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/evolut/qpae072\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae072","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Early survival in Atlantic salmon is associated with parental genotypes at loci linked to timing of maturation.
Large effect loci often contain genes with critical developmental functions and potentially broad effects across life stages. However, their life stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity and several physiological and behavioral traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early-life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high nutrients but not in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation but by maternal genotypes in the six6 locus and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects of large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.