与出现呼吸道症状的患者身体后遗症相关的代谢组学模式验证了脱水患者的休眠概念。

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Physiological genomics Pub Date : 2024-07-01 Epub Date: 2024-05-13 DOI:10.1152/physiolgenomics.00021.2024
Annelie Barrueta Tenhunen, Guillaume Butler-Laporte, Satoshi Yoshiji, Dave R Morrison, Tomoko Nakanishi, Yiheng Chen, Vincenzo Forgetta, Yossi Farjoun, Adriana Marton, Jens Marc Titze, Sandra Nihlén, Robert Frithiof, Miklos Lipcsey, J Brent Richards, Michael Hultström
{"title":"与出现呼吸道症状的患者身体后遗症相关的代谢组学模式验证了脱水患者的休眠概念。","authors":"Annelie Barrueta Tenhunen, Guillaume Butler-Laporte, Satoshi Yoshiji, Dave R Morrison, Tomoko Nakanishi, Yiheng Chen, Vincenzo Forgetta, Yossi Farjoun, Adriana Marton, Jens Marc Titze, Sandra Nihlén, Robert Frithiof, Miklos Lipcsey, J Brent Richards, Michael Hultström","doi":"10.1152/physiolgenomics.00021.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.<b>NEW & NOTEWORTHY</b> We have previously shown that humans exhibit an aestivation-like response where dehydration leads to a metabolic shift to urea synthesis, which is associated with long-term weakness indicating muscle wasting. In the present study, we validate this response in a new cohort and present a deeper metabolomic analysis and pathway analysis. Finally, we present a sex-stratified analysis suggesting weaker aestivation in women. However, women show less dehydration, so the association warrants further study.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"483-491"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolomic pattern associated with physical sequelae in patients presenting with respiratory symptoms validates the aestivation concept in dehydrated patients.\",\"authors\":\"Annelie Barrueta Tenhunen, Guillaume Butler-Laporte, Satoshi Yoshiji, Dave R Morrison, Tomoko Nakanishi, Yiheng Chen, Vincenzo Forgetta, Yossi Farjoun, Adriana Marton, Jens Marc Titze, Sandra Nihlén, Robert Frithiof, Miklos Lipcsey, J Brent Richards, Michael Hultström\",\"doi\":\"10.1152/physiolgenomics.00021.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.<b>NEW & NOTEWORTHY</b> We have previously shown that humans exhibit an aestivation-like response where dehydration leads to a metabolic shift to urea synthesis, which is associated with long-term weakness indicating muscle wasting. In the present study, we validate this response in a new cohort and present a deeper metabolomic analysis and pathway analysis. Finally, we present a sex-stratified analysis suggesting weaker aestivation in women. However, women show less dehydration, so the association warrants further study.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"483-491\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00021.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00021.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:高渗脱水与肌肉萎缩和有机渗透溶质的合成有关。最近,我们在 COVID-19 中发现了氨基酸生成和尿素循环激活的代谢转变,这与禁食反应一致。本研究旨在验证 COVID-19 Biobanque Québécoise de la COVID-19 (BQC19) 非 COVID 组群的代谢转变和长期体能结果的发展:我们纳入了 BQC19 的 824 名患者,其中 571 名患者有估计渗透压(eOSM = 2Na+2K+葡萄糖+尿素)形式的脱水数据,284 名患者有代谢组数据和长期随访。我们将脱水程度与死亡率、侵入性机械通气、急性肾损伤和长期症状相关联:结果:正如在 COVID 队列中发现的那样,较高的 eOSM 与总 eOSM 中较高的尿素和葡萄糖比例相关,并且与其他代谢物相比,氨基酸更为丰富。性别分层分析表明,女性的厌食反应可能较弱。更严重的脱水与急性期的死亡率、侵入性机械通气和急性肾损伤有关。重要的是,在对年龄、性别和疾病严重程度进行调整后,更严重的脱水与身体长期症状有关,但与精神长期症状无关:结论:缺水表现为 eOSM 增加的患者往往病情更严重,在急性期护理后会出现更多身体症状。这与氨基酸和尿素的产生有关,表明脱水导致肌肉萎缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolomic pattern associated with physical sequelae in patients presenting with respiratory symptoms validates the aestivation concept in dehydrated patients.

Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.NEW & NOTEWORTHY We have previously shown that humans exhibit an aestivation-like response where dehydration leads to a metabolic shift to urea synthesis, which is associated with long-term weakness indicating muscle wasting. In the present study, we validate this response in a new cohort and present a deeper metabolomic analysis and pathway analysis. Finally, we present a sex-stratified analysis suggesting weaker aestivation in women. However, women show less dehydration, so the association warrants further study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
期刊最新文献
Integrated Analysis of Methylome and Transcriptome Responses to Exercise Training in Children with Overweight/Obesity. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. MYL9 binding with MYO19 suppresses epithelial-mesenchymal transition in non-small-cell lung cancer. Age-related differences in gene expression and pathway activation following heat stroke. Physiological, biochemical and genome-wide expression patterns during graded normobaric hypoxia in healthy individuals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1