脂质纳米颗粒包裹的lncRNA DLX6-AS1敲除可通过Nrf2/HO-1/NLRP3轴改善脑缺血损伤。

IF 1.7 4区 医学 Q3 CLINICAL NEUROLOGY Neurological Research Pub Date : 2024-08-01 Epub Date: 2024-05-12 DOI:10.1080/01616412.2024.2345024
Chang Song, Yan Li, Huiying Han, Yueyue Zhang, Ning Wang
{"title":"脂质纳米颗粒包裹的lncRNA DLX6-AS1敲除可通过Nrf2/HO-1/NLRP3轴改善脑缺血损伤。","authors":"Chang Song, Yan Li, Huiying Han, Yueyue Zhang, Ning Wang","doi":"10.1080/01616412.2024.2345024","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p><p><strong>Methods: </strong>LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed.</p><p><strong>Results: </strong>LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis.</p><p><strong>Conclusion: </strong>Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p>","PeriodicalId":19131,"journal":{"name":"Neurological Research","volume":" ","pages":"706-716"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.\",\"authors\":\"Chang Song, Yan Li, Huiying Han, Yueyue Zhang, Ning Wang\",\"doi\":\"10.1080/01616412.2024.2345024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p><p><strong>Methods: </strong>LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed.</p><p><strong>Results: </strong>LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis.</p><p><strong>Conclusion: </strong>Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p>\",\"PeriodicalId\":19131,\"journal\":{\"name\":\"Neurological Research\",\"volume\":\" \",\"pages\":\"706-716\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01616412.2024.2345024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01616412.2024.2345024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:脑缺血是一种导致永久性残疾的神经系统疾病。本研究主要探讨脂质纳米颗粒(LNP)包裹的lncRNA DLX6-AS1敲除通过Nrf2/HO-1/NLRP3轴对脑缺血损伤的改善作用:方法:制备了LNP包裹的lncRNA DLX6-AS1。利用大脑中动脉闭塞(MCAO)建立脑缺血损伤小鼠模型。小鼠静脉注射 LNP-encapsulated lncRNA DLX6-AS1 治疗。观察了神经功能缺损、炎症因子水平和病理特征。建立体外 N2a 细胞缺氧和缺糖(OGD)模型,并用 LNP-encapsulated lncRNA DLX6-AS1 或 Nrf2 抑制剂(ML385)处理细胞。测试了细胞活力和凋亡情况。评估了DLX6-AS1、Nrf2、HO-1和NLRP3的表达水平:结果:LncRNA DLX6-AS1水平在脑缺血损伤小鼠脑组织和OGD诱导的N2a细胞中升高。LNP-encapsulated DLX6-AS1 siRNA(si-DLX6-AS1)可改善神经功能缺损评分,降低炎症因子水平,改善脑组织病理损伤,提高 CA1 存活神经元数量。LNP包裹的si-DLX6-AS1能改善OGD诱导的N2a细胞活力下降和凋亡率升高,而ML385(Nrf2抑制剂)能逆转LNP包裹的si-DLX6-AS1的改善作用。在脑缺血损伤小鼠和OGD诱导的N2a细胞中,Nrf2和HO-1水平降低,NLRP3水平升高。LNP包裹的si-DLX6-AS1提高了Nrf2和HO-1水平,降低了NLRP3水平。Nrf2抑制剂ML385可逆转LNP包被si-DLX6-AS1对OGD诱导的N2a细胞活力和凋亡的改善作用:结论:脂质纳米粒子包裹的si-DLX6-AS1可通过Nrf2/HO-1/NLRP3轴改善脑缺血损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.

Objective: Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.

Methods: LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed.

Results: LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis.

Conclusion: Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurological Research
Neurological Research 医学-临床神经学
CiteScore
3.60
自引率
0.00%
发文量
116
审稿时长
5.3 months
期刊介绍: Neurological Research is an international, peer-reviewed journal for reporting both basic and clinical research in the fields of neurosurgery, neurology, neuroengineering and neurosciences. It provides a medium for those who recognize the wider implications of their work and who wish to be informed of the relevant experience of others in related and more distant fields. The scope of the journal includes: •Stem cell applications •Molecular neuroscience •Neuropharmacology •Neuroradiology •Neurochemistry •Biomathematical models •Endovascular neurosurgery •Innovation in neurosurgery.
期刊最新文献
Education level and health profile related to global cognitive impairment in an urban community in West Jakarta, Indonesia. CD22 exacerbates brain injury in subarachnoid hemorrhage by inhibiting microglial phagocytic function. The association between the dynamics of red cell distribution width to lymphocyte ratio and clinical outcomes in patients with traumatic brain injury. The relationship between concentric and isometric strength of knee flexor and extensor muscles and postural stability in mild stage multiple sclerosis patients. A comparative study of cognitive function and reaction time in obese and non-obese adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1