{"title":"GLIMMERS:利用长线程测序探索胶质瘤分子标记物。","authors":"Wichayapat Thongrattana, Tantip Arigul, Bhoom Suktitipat, Manop Pithukpakorn, Sith Sathornsumetee, Thidathip Wongsurawat, Piroon Jenjaroenpun","doi":"10.1093/bioadv/vbae058","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The revised WHO guidelines for classifying and grading brain tumors include several copy number variation (CNV) markers. The turnaround time for detecting CNVs and alterations throughout the entire genome is drastically reduced with the customized read incremental approach on the nanopore platform. However, this approach is challenging for non-bioinformaticians due to the need to use multiple software tools, extract CNV markers and interpret results, which creates barriers due to the time and specialized resources that are necessary. To address this problem and help clinicians classify and grade brain tumors, we developed GLIMMERS: glioma molecular markers exploration using long-read sequencing, an open-access tool that automatically analyzes nanopore-based CNV data and generates simplified reports.</p><p><strong>Availability and implementation: </strong>GLIMMERS is available at https://gitlab.com/silol_public/glimmers under the terms of the MIT license.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087932/pdf/","citationCount":"0","resultStr":"{\"title\":\"GLIMMERS: glioma molecular markers exploration using long-read sequencing.\",\"authors\":\"Wichayapat Thongrattana, Tantip Arigul, Bhoom Suktitipat, Manop Pithukpakorn, Sith Sathornsumetee, Thidathip Wongsurawat, Piroon Jenjaroenpun\",\"doi\":\"10.1093/bioadv/vbae058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>The revised WHO guidelines for classifying and grading brain tumors include several copy number variation (CNV) markers. The turnaround time for detecting CNVs and alterations throughout the entire genome is drastically reduced with the customized read incremental approach on the nanopore platform. However, this approach is challenging for non-bioinformaticians due to the need to use multiple software tools, extract CNV markers and interpret results, which creates barriers due to the time and specialized resources that are necessary. To address this problem and help clinicians classify and grade brain tumors, we developed GLIMMERS: glioma molecular markers exploration using long-read sequencing, an open-access tool that automatically analyzes nanopore-based CNV data and generates simplified reports.</p><p><strong>Availability and implementation: </strong>GLIMMERS is available at https://gitlab.com/silol_public/glimmers under the terms of the MIT license.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
GLIMMERS: glioma molecular markers exploration using long-read sequencing.
Summary: The revised WHO guidelines for classifying and grading brain tumors include several copy number variation (CNV) markers. The turnaround time for detecting CNVs and alterations throughout the entire genome is drastically reduced with the customized read incremental approach on the nanopore platform. However, this approach is challenging for non-bioinformaticians due to the need to use multiple software tools, extract CNV markers and interpret results, which creates barriers due to the time and specialized resources that are necessary. To address this problem and help clinicians classify and grade brain tumors, we developed GLIMMERS: glioma molecular markers exploration using long-read sequencing, an open-access tool that automatically analyzes nanopore-based CNV data and generates simplified reports.
Availability and implementation: GLIMMERS is available at https://gitlab.com/silol_public/glimmers under the terms of the MIT license.