{"title":"用于腹部 DW-MRI 的自监督去噪扩散概率模型","authors":"Serge Vasylechko, Onur Afacan, Sila Kurugol","doi":"10.1007/978-3-031-47292-3_8","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative diffusion weighted MRI in the abdomen provides important markers of disease, however significant limitations exist for its accurate computation. One such limitation is the low signal-to-noise ratio, particularly at high diffusion b-values. To address this, multiple diffusion directional images can be collected at each b-value and geometrically averaged, which invariably leads to longer scan time, blurring due to motion and other artifacts. We propose a novel parameter estimation technique based on self supervised diffusion denoising probabilistic model that can effectively denoise diffusion weighted images and work on single diffusion gradient direction images. Our source code is made available at https://github.com/quin-med-harvard-edu/ssDDPM.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"14328 ","pages":"80-91"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086684/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI.\",\"authors\":\"Serge Vasylechko, Onur Afacan, Sila Kurugol\",\"doi\":\"10.1007/978-3-031-47292-3_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative diffusion weighted MRI in the abdomen provides important markers of disease, however significant limitations exist for its accurate computation. One such limitation is the low signal-to-noise ratio, particularly at high diffusion b-values. To address this, multiple diffusion directional images can be collected at each b-value and geometrically averaged, which invariably leads to longer scan time, blurring due to motion and other artifacts. We propose a novel parameter estimation technique based on self supervised diffusion denoising probabilistic model that can effectively denoise diffusion weighted images and work on single diffusion gradient direction images. Our source code is made available at https://github.com/quin-med-harvard-edu/ssDDPM.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"14328 \",\"pages\":\"80-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086684/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-47292-3_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47292-3_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
腹部定量弥散加权磁共振成像可提供重要的疾病标记,但其精确计算存在很大的局限性。其中一个限制是信噪比低,尤其是在高扩散 b 值时。为了解决这个问题,可以在每个 b 值处采集多个扩散方向图像并进行几何平均,但这必然会导致扫描时间延长、运动造成的模糊和其他伪影。我们提出了一种基于自我监督扩散去噪概率模型的新型参数估计技术,它能有效地对扩散加权图像进行去噪,并可用于单扩散梯度方向图像。我们的源代码可在 https://github.com/quin-med-harvard-edu/ssDDPM 上获取。
Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI.
Quantitative diffusion weighted MRI in the abdomen provides important markers of disease, however significant limitations exist for its accurate computation. One such limitation is the low signal-to-noise ratio, particularly at high diffusion b-values. To address this, multiple diffusion directional images can be collected at each b-value and geometrically averaged, which invariably leads to longer scan time, blurring due to motion and other artifacts. We propose a novel parameter estimation technique based on self supervised diffusion denoising probabilistic model that can effectively denoise diffusion weighted images and work on single diffusion gradient direction images. Our source code is made available at https://github.com/quin-med-harvard-edu/ssDDPM.