Jianguo Lu , Liling Tan , Wansheng Pei , Jiajia Gao , Fei Deng , Xiaoxun Zhou , Zhexi Zhang
{"title":"水泥稳定的淤泥质粘土在低温固化条件下的剪切行为","authors":"Jianguo Lu , Liling Tan , Wansheng Pei , Jiajia Gao , Fei Deng , Xiaoxun Zhou , Zhexi Zhang","doi":"10.1016/j.coldregions.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><p>Cement-stabilized soils are widely used in civil engineering applications. However, they inevitably encounter low-temperature curing conditions, particularly in cold regions. In this study, shear experiments were conducted on cement-stabilized silty clays with different dry densities, cement contents, curing ages and temperatures. The factors influencing the shear performance of cement-stabilized soils were analyzed. The results showed that the peak value of the shear stress-displacement curve of the cement-stabilized silty clay increased with the vertical pressure, and the failure patterns for soils with and without cement significantly differed. Generally, the soils without cement underwent ductile failure, whereas the cement-stabilized soils experienced brittle failure. The shear strength and cohesion of the cement-stabilized soils increased with cement content, dry density, curing age and temperature. In addition, the ice and hydration products significantly influenced the internal friction angle of the cement-stabilized soils. An optimal cement content for silty clay was determined to obtain the largest internal friction angle, which ranged from 12% to 15%. Furthermore, at the curing temperature of −2 °C, the edge-face contact form accounted for the majority with a relatively high porosity, but the morphology of C-S-H changed from a sheet-like form to reticulate structure when the curing temperature increased to 22 °C. However, the contribution of the ice crystals to the shear strength was less significant than that of the hydration products. This study provides insights into the mechanical and microstructural properties of cement-stabilized soils in cold-region geotechnical construction.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear behavior of cement-stabilized silty clay exposed to low-temperature curing\",\"authors\":\"Jianguo Lu , Liling Tan , Wansheng Pei , Jiajia Gao , Fei Deng , Xiaoxun Zhou , Zhexi Zhang\",\"doi\":\"10.1016/j.coldregions.2024.104215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cement-stabilized soils are widely used in civil engineering applications. However, they inevitably encounter low-temperature curing conditions, particularly in cold regions. In this study, shear experiments were conducted on cement-stabilized silty clays with different dry densities, cement contents, curing ages and temperatures. The factors influencing the shear performance of cement-stabilized soils were analyzed. The results showed that the peak value of the shear stress-displacement curve of the cement-stabilized silty clay increased with the vertical pressure, and the failure patterns for soils with and without cement significantly differed. Generally, the soils without cement underwent ductile failure, whereas the cement-stabilized soils experienced brittle failure. The shear strength and cohesion of the cement-stabilized soils increased with cement content, dry density, curing age and temperature. In addition, the ice and hydration products significantly influenced the internal friction angle of the cement-stabilized soils. An optimal cement content for silty clay was determined to obtain the largest internal friction angle, which ranged from 12% to 15%. Furthermore, at the curing temperature of −2 °C, the edge-face contact form accounted for the majority with a relatively high porosity, but the morphology of C-S-H changed from a sheet-like form to reticulate structure when the curing temperature increased to 22 °C. However, the contribution of the ice crystals to the shear strength was less significant than that of the hydration products. This study provides insights into the mechanical and microstructural properties of cement-stabilized soils in cold-region geotechnical construction.</p></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X2400096X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X2400096X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Shear behavior of cement-stabilized silty clay exposed to low-temperature curing
Cement-stabilized soils are widely used in civil engineering applications. However, they inevitably encounter low-temperature curing conditions, particularly in cold regions. In this study, shear experiments were conducted on cement-stabilized silty clays with different dry densities, cement contents, curing ages and temperatures. The factors influencing the shear performance of cement-stabilized soils were analyzed. The results showed that the peak value of the shear stress-displacement curve of the cement-stabilized silty clay increased with the vertical pressure, and the failure patterns for soils with and without cement significantly differed. Generally, the soils without cement underwent ductile failure, whereas the cement-stabilized soils experienced brittle failure. The shear strength and cohesion of the cement-stabilized soils increased with cement content, dry density, curing age and temperature. In addition, the ice and hydration products significantly influenced the internal friction angle of the cement-stabilized soils. An optimal cement content for silty clay was determined to obtain the largest internal friction angle, which ranged from 12% to 15%. Furthermore, at the curing temperature of −2 °C, the edge-face contact form accounted for the majority with a relatively high porosity, but the morphology of C-S-H changed from a sheet-like form to reticulate structure when the curing temperature increased to 22 °C. However, the contribution of the ice crystals to the shear strength was less significant than that of the hydration products. This study provides insights into the mechanical and microstructural properties of cement-stabilized soils in cold-region geotechnical construction.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.