{"title":"莴苣幼苗通过确定性过程从环境中快速组合微生物群","authors":"Nesma Zakaria Mohamed , Leonardo Schena , Antonino Malacrinò","doi":"10.1016/j.rhisph.2024.100896","DOIUrl":null,"url":null,"abstract":"<div><p>Plant-associated microorganisms have significant impacts on plant biology, ecology, and evolution. Although several studies have examined the factors driving variations in plant microbiomes, the mechanisms underlying the assembly of the plant microbiome are still poorly understood. In this study, we used gnotobiotic plants to test (i) whether seedlings create a selective environment and drive the assembly of root and leaf microbiomes through deterministic or stochastic processes, and (ii) whether seedlings structure the microbiome that is transferred through seeds using deterministic processes and whether this pattern changes when seedlings are exposed to the environmental microbiome. Our results show that the microbiome of gnotobiotic plants (i.e., inherited through seeds) is not under the selective influence of the host plant but changes quickly when plants are exposed to soil microbiomes. Within one week, plants were able to select microorganisms from the inocula, assemble the root microbiome, and assemble the shoot microbiome. This study supports the hypothesis that plants at early developmental stages might exert strong selective activity on their microbiomes and contribute to clarifying the mechanisms of plant microbiome assembly.</p></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"30 ","pages":"Article 100896"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245221982400051X/pdfft?md5=3b1eba0976c7adf1c7aab57eea53442a&pid=1-s2.0-S245221982400051X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lettuce seedlings rapidly assemble their microbiome from the environment through deterministic processes\",\"authors\":\"Nesma Zakaria Mohamed , Leonardo Schena , Antonino Malacrinò\",\"doi\":\"10.1016/j.rhisph.2024.100896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant-associated microorganisms have significant impacts on plant biology, ecology, and evolution. Although several studies have examined the factors driving variations in plant microbiomes, the mechanisms underlying the assembly of the plant microbiome are still poorly understood. In this study, we used gnotobiotic plants to test (i) whether seedlings create a selective environment and drive the assembly of root and leaf microbiomes through deterministic or stochastic processes, and (ii) whether seedlings structure the microbiome that is transferred through seeds using deterministic processes and whether this pattern changes when seedlings are exposed to the environmental microbiome. Our results show that the microbiome of gnotobiotic plants (i.e., inherited through seeds) is not under the selective influence of the host plant but changes quickly when plants are exposed to soil microbiomes. Within one week, plants were able to select microorganisms from the inocula, assemble the root microbiome, and assemble the shoot microbiome. This study supports the hypothesis that plants at early developmental stages might exert strong selective activity on their microbiomes and contribute to clarifying the mechanisms of plant microbiome assembly.</p></div>\",\"PeriodicalId\":48589,\"journal\":{\"name\":\"Rhizosphere\",\"volume\":\"30 \",\"pages\":\"Article 100896\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S245221982400051X/pdfft?md5=3b1eba0976c7adf1c7aab57eea53442a&pid=1-s2.0-S245221982400051X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rhizosphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245221982400051X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245221982400051X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Lettuce seedlings rapidly assemble their microbiome from the environment through deterministic processes
Plant-associated microorganisms have significant impacts on plant biology, ecology, and evolution. Although several studies have examined the factors driving variations in plant microbiomes, the mechanisms underlying the assembly of the plant microbiome are still poorly understood. In this study, we used gnotobiotic plants to test (i) whether seedlings create a selective environment and drive the assembly of root and leaf microbiomes through deterministic or stochastic processes, and (ii) whether seedlings structure the microbiome that is transferred through seeds using deterministic processes and whether this pattern changes when seedlings are exposed to the environmental microbiome. Our results show that the microbiome of gnotobiotic plants (i.e., inherited through seeds) is not under the selective influence of the host plant but changes quickly when plants are exposed to soil microbiomes. Within one week, plants were able to select microorganisms from the inocula, assemble the root microbiome, and assemble the shoot microbiome. This study supports the hypothesis that plants at early developmental stages might exert strong selective activity on their microbiomes and contribute to clarifying the mechanisms of plant microbiome assembly.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.